Metamath Proof Explorer


Theorem negreb

Description: The negative of a real is real. (Contributed by NM, 11-Aug-1999) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion negreb AAA

Proof

Step Hyp Ref Expression
1 renegcl AA
2 negneg AA=A
3 2 eleq1d AAA
4 1 3 imbitrid AAA
5 renegcl AA
6 4 5 impbid1 AAA