Description: The negative of a real is real. (Contributed by NM, 11-Aug-1999) (Revised by Mario Carneiro, 14-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | negreb | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl | ⊢ ( - 𝐴 ∈ ℝ → - - 𝐴 ∈ ℝ ) | |
2 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
3 | 2 | eleq1d | ⊢ ( 𝐴 ∈ ℂ → ( - - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
4 | 1 3 | syl5ib | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) ) |
5 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
6 | 4 5 | impbid1 | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |