Metamath Proof Explorer


Theorem negreb

Description: The negative of a real is real. (Contributed by NM, 11-Aug-1999) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion negreb ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) )

Proof

Step Hyp Ref Expression
1 renegcl ( - 𝐴 ∈ ℝ → - - 𝐴 ∈ ℝ )
2 negneg ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 )
3 2 eleq1d ( 𝐴 ∈ ℂ → ( - - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) )
4 1 3 syl5ib ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) )
5 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
6 4 5 impbid1 ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) )