Description: If A is not a nonpositive integer, then A is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dmgmn0.a | |- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
|
| Assertion | dmgmn0 | |- ( ph -> A =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmgmn0.a | |- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
|
| 2 | 1 | eldifad | |- ( ph -> A e. CC ) |
| 3 | 2 | addridd | |- ( ph -> ( A + 0 ) = A ) |
| 4 | 0nn0 | |- 0 e. NN0 |
|
| 5 | dmgmaddn0 | |- ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ 0 e. NN0 ) -> ( A + 0 ) =/= 0 ) |
|
| 6 | 1 4 5 | sylancl | |- ( ph -> ( A + 0 ) =/= 0 ) |
| 7 | 3 6 | eqnetrrd | |- ( ph -> A =/= 0 ) |