Description: If A is not a nonpositive integer, then A is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dmgmn0.a | |- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
|
Assertion | dmgmn0 | |- ( ph -> A =/= 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmgmn0.a | |- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
|
2 | 1 | eldifad | |- ( ph -> A e. CC ) |
3 | 2 | addid1d | |- ( ph -> ( A + 0 ) = A ) |
4 | 0nn0 | |- 0 e. NN0 |
|
5 | dmgmaddn0 | |- ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ 0 e. NN0 ) -> ( A + 0 ) =/= 0 ) |
|
6 | 1 4 5 | sylancl | |- ( ph -> ( A + 0 ) =/= 0 ) |
7 | 3 6 | eqnetrrd | |- ( ph -> A =/= 0 ) |