Metamath Proof Explorer


Theorem dmgmn0

Description: If A is not a nonpositive integer, then A is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypothesis dmgmn0.a
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) )
Assertion dmgmn0
|- ( ph -> A =/= 0 )

Proof

Step Hyp Ref Expression
1 dmgmn0.a
 |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) )
2 1 eldifad
 |-  ( ph -> A e. CC )
3 2 addid1d
 |-  ( ph -> ( A + 0 ) = A )
4 0nn0
 |-  0 e. NN0
5 dmgmaddn0
 |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ 0 e. NN0 ) -> ( A + 0 ) =/= 0 )
6 1 4 5 sylancl
 |-  ( ph -> ( A + 0 ) =/= 0 )
7 3 6 eqnetrrd
 |-  ( ph -> A =/= 0 )