| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmgmn0.a |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 2 |  | dmgmaddnn0.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 3 | 1 | eldifad |  |-  ( ph -> A e. CC ) | 
						
							| 4 | 2 | nn0cnd |  |-  ( ph -> N e. CC ) | 
						
							| 5 | 3 4 | addcld |  |-  ( ph -> ( A + N ) e. CC ) | 
						
							| 6 |  | eldmgm |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. -u A e. NN0 ) ) | 
						
							| 7 | 1 6 | sylib |  |-  ( ph -> ( A e. CC /\ -. -u A e. NN0 ) ) | 
						
							| 8 | 7 | simprd |  |-  ( ph -> -. -u A e. NN0 ) | 
						
							| 9 | 3 4 | negdi2d |  |-  ( ph -> -u ( A + N ) = ( -u A - N ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ph -> ( -u ( A + N ) + N ) = ( ( -u A - N ) + N ) ) | 
						
							| 11 | 3 | negcld |  |-  ( ph -> -u A e. CC ) | 
						
							| 12 | 11 4 | npcand |  |-  ( ph -> ( ( -u A - N ) + N ) = -u A ) | 
						
							| 13 | 10 12 | eqtrd |  |-  ( ph -> ( -u ( A + N ) + N ) = -u A ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ -u ( A + N ) e. NN0 ) -> ( -u ( A + N ) + N ) = -u A ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ -u ( A + N ) e. NN0 ) -> -u ( A + N ) e. NN0 ) | 
						
							| 16 | 2 | adantr |  |-  ( ( ph /\ -u ( A + N ) e. NN0 ) -> N e. NN0 ) | 
						
							| 17 | 15 16 | nn0addcld |  |-  ( ( ph /\ -u ( A + N ) e. NN0 ) -> ( -u ( A + N ) + N ) e. NN0 ) | 
						
							| 18 | 14 17 | eqeltrrd |  |-  ( ( ph /\ -u ( A + N ) e. NN0 ) -> -u A e. NN0 ) | 
						
							| 19 | 8 18 | mtand |  |-  ( ph -> -. -u ( A + N ) e. NN0 ) | 
						
							| 20 |  | eldmgm |  |-  ( ( A + N ) e. ( CC \ ( ZZ \ NN ) ) <-> ( ( A + N ) e. CC /\ -. -u ( A + N ) e. NN0 ) ) | 
						
							| 21 | 5 19 20 | sylanbrc |  |-  ( ph -> ( A + N ) e. ( CC \ ( ZZ \ NN ) ) ) |