| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmgmn0.a |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 2 |
|
dmgmaddnn0.n |
|- ( ph -> N e. NN0 ) |
| 3 |
1
|
eldifad |
|- ( ph -> A e. CC ) |
| 4 |
2
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 5 |
3 4
|
addcld |
|- ( ph -> ( A + N ) e. CC ) |
| 6 |
|
eldmgm |
|- ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. -u A e. NN0 ) ) |
| 7 |
1 6
|
sylib |
|- ( ph -> ( A e. CC /\ -. -u A e. NN0 ) ) |
| 8 |
7
|
simprd |
|- ( ph -> -. -u A e. NN0 ) |
| 9 |
3 4
|
negdi2d |
|- ( ph -> -u ( A + N ) = ( -u A - N ) ) |
| 10 |
9
|
oveq1d |
|- ( ph -> ( -u ( A + N ) + N ) = ( ( -u A - N ) + N ) ) |
| 11 |
3
|
negcld |
|- ( ph -> -u A e. CC ) |
| 12 |
11 4
|
npcand |
|- ( ph -> ( ( -u A - N ) + N ) = -u A ) |
| 13 |
10 12
|
eqtrd |
|- ( ph -> ( -u ( A + N ) + N ) = -u A ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ -u ( A + N ) e. NN0 ) -> ( -u ( A + N ) + N ) = -u A ) |
| 15 |
|
simpr |
|- ( ( ph /\ -u ( A + N ) e. NN0 ) -> -u ( A + N ) e. NN0 ) |
| 16 |
2
|
adantr |
|- ( ( ph /\ -u ( A + N ) e. NN0 ) -> N e. NN0 ) |
| 17 |
15 16
|
nn0addcld |
|- ( ( ph /\ -u ( A + N ) e. NN0 ) -> ( -u ( A + N ) + N ) e. NN0 ) |
| 18 |
14 17
|
eqeltrrd |
|- ( ( ph /\ -u ( A + N ) e. NN0 ) -> -u A e. NN0 ) |
| 19 |
8 18
|
mtand |
|- ( ph -> -. -u ( A + N ) e. NN0 ) |
| 20 |
|
eldmgm |
|- ( ( A + N ) e. ( CC \ ( ZZ \ NN ) ) <-> ( ( A + N ) e. CC /\ -. -u ( A + N ) e. NN0 ) ) |
| 21 |
5 19 20
|
sylanbrc |
|- ( ph -> ( A + N ) e. ( CC \ ( ZZ \ NN ) ) ) |