| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmgmn0.a |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 2 |
|
dmgmdivn0.a |
|- ( ph -> M e. NN ) |
| 3 |
1
|
eldifad |
|- ( ph -> A e. CC ) |
| 4 |
2
|
nncnd |
|- ( ph -> M e. CC ) |
| 5 |
2
|
nnne0d |
|- ( ph -> M =/= 0 ) |
| 6 |
3 4 4 5
|
divdird |
|- ( ph -> ( ( A + M ) / M ) = ( ( A / M ) + ( M / M ) ) ) |
| 7 |
4 5
|
dividd |
|- ( ph -> ( M / M ) = 1 ) |
| 8 |
7
|
oveq2d |
|- ( ph -> ( ( A / M ) + ( M / M ) ) = ( ( A / M ) + 1 ) ) |
| 9 |
6 8
|
eqtrd |
|- ( ph -> ( ( A + M ) / M ) = ( ( A / M ) + 1 ) ) |
| 10 |
3 4
|
addcld |
|- ( ph -> ( A + M ) e. CC ) |
| 11 |
2
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 12 |
|
dmgmaddn0 |
|- ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ M e. NN0 ) -> ( A + M ) =/= 0 ) |
| 13 |
1 11 12
|
syl2anc |
|- ( ph -> ( A + M ) =/= 0 ) |
| 14 |
10 4 13 5
|
divne0d |
|- ( ph -> ( ( A + M ) / M ) =/= 0 ) |
| 15 |
9 14
|
eqnetrrd |
|- ( ph -> ( ( A / M ) + 1 ) =/= 0 ) |