| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmgmn0.a |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 2 |  | dmgmdivn0.a |  |-  ( ph -> M e. NN ) | 
						
							| 3 | 1 | eldifad |  |-  ( ph -> A e. CC ) | 
						
							| 4 | 2 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 5 | 2 | nnne0d |  |-  ( ph -> M =/= 0 ) | 
						
							| 6 | 3 4 4 5 | divdird |  |-  ( ph -> ( ( A + M ) / M ) = ( ( A / M ) + ( M / M ) ) ) | 
						
							| 7 | 4 5 | dividd |  |-  ( ph -> ( M / M ) = 1 ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ph -> ( ( A / M ) + ( M / M ) ) = ( ( A / M ) + 1 ) ) | 
						
							| 9 | 6 8 | eqtrd |  |-  ( ph -> ( ( A + M ) / M ) = ( ( A / M ) + 1 ) ) | 
						
							| 10 | 3 4 | addcld |  |-  ( ph -> ( A + M ) e. CC ) | 
						
							| 11 | 2 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 12 |  | dmgmaddn0 |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ M e. NN0 ) -> ( A + M ) =/= 0 ) | 
						
							| 13 | 1 11 12 | syl2anc |  |-  ( ph -> ( A + M ) =/= 0 ) | 
						
							| 14 | 10 4 13 5 | divne0d |  |-  ( ph -> ( ( A + M ) / M ) =/= 0 ) | 
						
							| 15 | 9 14 | eqnetrrd |  |-  ( ph -> ( ( A / M ) + 1 ) =/= 0 ) |