| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmgmn0.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 2 |  | dmgmdivn0.a | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 3 | 1 | eldifad | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 4 | 2 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 5 | 2 | nnne0d | ⊢ ( 𝜑  →  𝑀  ≠  0 ) | 
						
							| 6 | 3 4 4 5 | divdird | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑀 )  /  𝑀 )  =  ( ( 𝐴  /  𝑀 )  +  ( 𝑀  /  𝑀 ) ) ) | 
						
							| 7 | 4 5 | dividd | ⊢ ( 𝜑  →  ( 𝑀  /  𝑀 )  =  1 ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐴  /  𝑀 )  +  ( 𝑀  /  𝑀 ) )  =  ( ( 𝐴  /  𝑀 )  +  1 ) ) | 
						
							| 9 | 6 8 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑀 )  /  𝑀 )  =  ( ( 𝐴  /  𝑀 )  +  1 ) ) | 
						
							| 10 | 3 4 | addcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝑀 )  ∈  ℂ ) | 
						
							| 11 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 12 |  | dmgmaddn0 | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐴  +  𝑀 )  ≠  0 ) | 
						
							| 13 | 1 11 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  +  𝑀 )  ≠  0 ) | 
						
							| 14 | 10 4 13 5 | divne0d | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑀 )  /  𝑀 )  ≠  0 ) | 
						
							| 15 | 9 14 | eqnetrrd | ⊢ ( 𝜑  →  ( ( 𝐴  /  𝑀 )  +  1 )  ≠  0 ) |