Step |
Hyp |
Ref |
Expression |
1 |
|
dmgmn0.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
2 |
|
dmgmdivn0.a |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
1
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
4 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
5 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
6 |
3 4 4 5
|
divdird |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑀 ) / 𝑀 ) = ( ( 𝐴 / 𝑀 ) + ( 𝑀 / 𝑀 ) ) ) |
7 |
4 5
|
dividd |
⊢ ( 𝜑 → ( 𝑀 / 𝑀 ) = 1 ) |
8 |
7
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 / 𝑀 ) + ( 𝑀 / 𝑀 ) ) = ( ( 𝐴 / 𝑀 ) + 1 ) ) |
9 |
6 8
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑀 ) / 𝑀 ) = ( ( 𝐴 / 𝑀 ) + 1 ) ) |
10 |
3 4
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑀 ) ∈ ℂ ) |
11 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
12 |
|
dmgmaddn0 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 + 𝑀 ) ≠ 0 ) |
13 |
1 11 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 + 𝑀 ) ≠ 0 ) |
14 |
10 4 13 5
|
divne0d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑀 ) / 𝑀 ) ≠ 0 ) |
15 |
9 14
|
eqnetrrd |
⊢ ( 𝜑 → ( ( 𝐴 / 𝑀 ) + 1 ) ≠ 0 ) |