Metamath Proof Explorer


Theorem dmgmdivn0

Description: Lemma for lgamf . (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses dmgmn0.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
dmgmdivn0.a ( 𝜑𝑀 ∈ ℕ )
Assertion dmgmdivn0 ( 𝜑 → ( ( 𝐴 / 𝑀 ) + 1 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 dmgmn0.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
2 dmgmdivn0.a ( 𝜑𝑀 ∈ ℕ )
3 1 eldifad ( 𝜑𝐴 ∈ ℂ )
4 2 nncnd ( 𝜑𝑀 ∈ ℂ )
5 2 nnne0d ( 𝜑𝑀 ≠ 0 )
6 3 4 4 5 divdird ( 𝜑 → ( ( 𝐴 + 𝑀 ) / 𝑀 ) = ( ( 𝐴 / 𝑀 ) + ( 𝑀 / 𝑀 ) ) )
7 4 5 dividd ( 𝜑 → ( 𝑀 / 𝑀 ) = 1 )
8 7 oveq2d ( 𝜑 → ( ( 𝐴 / 𝑀 ) + ( 𝑀 / 𝑀 ) ) = ( ( 𝐴 / 𝑀 ) + 1 ) )
9 6 8 eqtrd ( 𝜑 → ( ( 𝐴 + 𝑀 ) / 𝑀 ) = ( ( 𝐴 / 𝑀 ) + 1 ) )
10 3 4 addcld ( 𝜑 → ( 𝐴 + 𝑀 ) ∈ ℂ )
11 2 nnnn0d ( 𝜑𝑀 ∈ ℕ0 )
12 dmgmaddn0 ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 + 𝑀 ) ≠ 0 )
13 1 11 12 syl2anc ( 𝜑 → ( 𝐴 + 𝑀 ) ≠ 0 )
14 10 4 13 5 divne0d ( 𝜑 → ( ( 𝐴 + 𝑀 ) / 𝑀 ) ≠ 0 )
15 9 14 eqnetrrd ( 𝜑 → ( ( 𝐴 / 𝑀 ) + 1 ) ≠ 0 )