Metamath Proof Explorer


Theorem dmgmdivn0

Description: Lemma for lgamf . (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses dmgmn0.a φ A
dmgmdivn0.a φ M
Assertion dmgmdivn0 φ A M + 1 0

Proof

Step Hyp Ref Expression
1 dmgmn0.a φ A
2 dmgmdivn0.a φ M
3 1 eldifad φ A
4 2 nncnd φ M
5 2 nnne0d φ M 0
6 3 4 4 5 divdird φ A + M M = A M + M M
7 4 5 dividd φ M M = 1
8 7 oveq2d φ A M + M M = A M + 1
9 6 8 eqtrd φ A + M M = A M + 1
10 3 4 addcld φ A + M
11 2 nnnn0d φ M 0
12 dmgmaddn0 A M 0 A + M 0
13 1 11 12 syl2anc φ A + M 0
14 10 4 13 5 divne0d φ A + M M 0
15 9 14 eqnetrrd φ A M + 1 0