Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Gamma function
dmgmdivn0
Next ⟩
lgamgulmlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmgmdivn0
Description:
Lemma for
lgamf
.
(Contributed by
Mario Carneiro
, 3-Jul-2017)
Ref
Expression
Hypotheses
dmgmn0.a
⊢
φ
→
A
∈
ℂ
∖
ℤ
∖
ℕ
dmgmdivn0.a
⊢
φ
→
M
∈
ℕ
Assertion
dmgmdivn0
⊢
φ
→
A
M
+
1
≠
0
Proof
Step
Hyp
Ref
Expression
1
dmgmn0.a
⊢
φ
→
A
∈
ℂ
∖
ℤ
∖
ℕ
2
dmgmdivn0.a
⊢
φ
→
M
∈
ℕ
3
1
eldifad
⊢
φ
→
A
∈
ℂ
4
2
nncnd
⊢
φ
→
M
∈
ℂ
5
2
nnne0d
⊢
φ
→
M
≠
0
6
3
4
4
5
divdird
⊢
φ
→
A
+
M
M
=
A
M
+
M
M
7
4
5
dividd
⊢
φ
→
M
M
=
1
8
7
oveq2d
⊢
φ
→
A
M
+
M
M
=
A
M
+
1
9
6
8
eqtrd
⊢
φ
→
A
+
M
M
=
A
M
+
1
10
3
4
addcld
⊢
φ
→
A
+
M
∈
ℂ
11
2
nnnn0d
⊢
φ
→
M
∈
ℕ
0
12
dmgmaddn0
⊢
A
∈
ℂ
∖
ℤ
∖
ℕ
∧
M
∈
ℕ
0
→
A
+
M
≠
0
13
1
11
12
syl2anc
⊢
φ
→
A
+
M
≠
0
14
10
4
13
5
divne0d
⊢
φ
→
A
+
M
M
≠
0
15
9
14
eqnetrrd
⊢
φ
→
A
M
+
1
≠
0