Metamath Proof Explorer


Theorem lgamgulmlem1

Description: Lemma for lgamgulm . (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φR
lgamgulm.u U=x|xRk01Rx+k
Assertion lgamgulmlem1 φU

Proof

Step Hyp Ref Expression
1 lgamgulm.r φR
2 lgamgulm.u U=x|xRk01Rx+k
3 simp2 φxxRk01Rx+kx
4 1 3ad2ant1 φxxRk01Rx+kR
5 4 nnred φxxRk01Rx+kR
6 4 nngt0d φxxRk01Rx+k0<R
7 5 6 recgt0d φxxRk01Rx+k0<1R
8 0red φxxRk01Rx+k0
9 4 nnrecred φxxRk01Rx+k1R
10 8 9 ltnled φxxRk01Rx+k0<1R¬1R0
11 7 10 mpbid φxxRk01Rx+k¬1R0
12 oveq2 k=xx+k=x+x
13 12 fveq2d k=xx+k=x+x
14 13 breq2d k=x1Rx+k1Rx+x
15 14 rspccv k01Rx+kx01Rx+x
16 15 adantl xRk01Rx+kx01Rx+x
17 16 3ad2ant3 φxxRk01Rx+kx01Rx+x
18 3 negidd φxxRk01Rx+kx+x=0
19 18 fveq2d φxxRk01Rx+kx+x=0
20 abs0 0=0
21 19 20 eqtrdi φxxRk01Rx+kx+x=0
22 21 breq2d φxxRk01Rx+k1Rx+x1R0
23 17 22 sylibd φxxRk01Rx+kx01R0
24 11 23 mtod φxxRk01Rx+k¬x0
25 eldmgm xx¬x0
26 3 24 25 sylanbrc φxxRk01Rx+kx
27 26 rabssdv φx|xRk01Rx+k
28 2 27 eqsstrid φU