Metamath Proof Explorer


Theorem lgamgulm

Description: The series G is uniformly convergent on the compact region U , which describes a circle of radius R with holes of size 1 / R around the poles of the gamma function. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φR
lgamgulm.u U=x|xRk01Rx+k
lgamgulm.g G=mzUzlogm+1mlogzm+1
Assertion lgamgulm φseq1f+GdomuU

Proof

Step Hyp Ref Expression
1 lgamgulm.r φR
2 lgamgulm.u U=x|xRk01Rx+k
3 lgamgulm.g G=mzUzlogm+1mlogzm+1
4 eqid mif2RmR2R+1m2Rlogm+1m+logR+1m+π=mif2RmR2R+1m2Rlogm+1m+logR+1m+π
5 1 2 3 4 lgamgulmlem6 φseq1f+GdomuUseq1f+GuUzU1rzU1r
6 5 simpld φseq1f+GdomuU