Metamath Proof Explorer


Theorem lgamgulm

Description: The series G is uniformly convergent on the compact region U , which describes a circle of radius R with holes of size 1 / R around the poles of the gamma function. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φ R
lgamgulm.u U = x | x R k 0 1 R x + k
lgamgulm.g G = m z U z log m + 1 m log z m + 1
Assertion lgamgulm φ seq 1 f + G dom u U

Proof

Step Hyp Ref Expression
1 lgamgulm.r φ R
2 lgamgulm.u U = x | x R k 0 1 R x + k
3 lgamgulm.g G = m z U z log m + 1 m log z m + 1
4 eqid m if 2 R m R 2 R + 1 m 2 R log m + 1 m + log R + 1 m + π = m if 2 R m R 2 R + 1 m 2 R log m + 1 m + log R + 1 m + π
5 1 2 3 4 lgamgulmlem6 φ seq 1 f + G dom u U seq 1 f + G u U z U 1 r z U 1 r
6 5 simpld φ seq 1 f + G dom u U