Metamath Proof Explorer


Theorem lgamgulmlem6

Description: The series G is uniformly convergent on the compact region U , which describes a circle of radius R with holes of size 1 / R around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φ R
lgamgulm.u U = x | x R k 0 1 R x + k
lgamgulm.g G = m z U z log m + 1 m log z m + 1
lgamgulm.t T = m if 2 R m R 2 R + 1 m 2 R log m + 1 m + log R + 1 m + π
Assertion lgamgulmlem6 φ seq 1 f + G dom u U seq 1 f + G u U z U O r z U O r

Proof

Step Hyp Ref Expression
1 lgamgulm.r φ R
2 lgamgulm.u U = x | x R k 0 1 R x + k
3 lgamgulm.g G = m z U z log m + 1 m log z m + 1
4 lgamgulm.t T = m if 2 R m R 2 R + 1 m 2 R log m + 1 m + log R + 1 m + π
5 nnuz = 1
6 1zzd φ 1
7 cnex V
8 2 7 rabex2 U V
9 8 a1i φ U V
10 1 2 lgamgulmlem1 φ U
11 10 ad2antrr φ m z U U
12 simpr φ m z U z U
13 11 12 sseldd φ m z U z
14 13 eldifad φ m z U z
15 simplr φ m z U m
16 15 peano2nnd φ m z U m + 1
17 16 nnrpd φ m z U m + 1 +
18 15 nnrpd φ m z U m +
19 17 18 rpdivcld φ m z U m + 1 m +
20 19 relogcld φ m z U log m + 1 m
21 20 recnd φ m z U log m + 1 m
22 14 21 mulcld φ m z U z log m + 1 m
23 15 nncnd φ m z U m
24 15 nnne0d φ m z U m 0
25 14 23 24 divcld φ m z U z m
26 1cnd φ m z U 1
27 25 26 addcld φ m z U z m + 1
28 13 15 dmgmdivn0 φ m z U z m + 1 0
29 27 28 logcld φ m z U log z m + 1
30 22 29 subcld φ m z U z log m + 1 m log z m + 1
31 30 fmpttd φ m z U z log m + 1 m log z m + 1 : U
32 7 8 elmap z U z log m + 1 m log z m + 1 U z U z log m + 1 m log z m + 1 : U
33 31 32 sylibr φ m z U z log m + 1 m log z m + 1 U
34 33 3 fmptd φ G : U
35 nnex V
36 35 mptex m if 2 R m R 2 R + 1 m 2 R log m + 1 m + log R + 1 m + π V
37 4 36 eqeltri T V
38 37 a1i φ T V
39 1 adantr φ m R
40 39 nnred φ m R
41 2re 2
42 41 a1i φ m 2
43 1red φ m 1
44 40 43 readdcld φ m R + 1
45 42 44 remulcld φ m 2 R + 1
46 simpr φ m m
47 46 nnsqcld φ m m 2
48 45 47 nndivred φ m 2 R + 1 m 2
49 40 48 remulcld φ m R 2 R + 1 m 2
50 46 peano2nnd φ m m + 1
51 50 nnrpd φ m m + 1 +
52 46 nnrpd φ m m +
53 51 52 rpdivcld φ m m + 1 m +
54 53 relogcld φ m log m + 1 m
55 40 54 remulcld φ m R log m + 1 m
56 39 peano2nnd φ m R + 1
57 56 nnrpd φ m R + 1 +
58 57 52 rpmulcld φ m R + 1 m +
59 58 relogcld φ m log R + 1 m
60 pire π
61 60 a1i φ m π
62 59 61 readdcld φ m log R + 1 m + π
63 55 62 readdcld φ m R log m + 1 m + log R + 1 m + π
64 49 63 ifcld φ m if 2 R m R 2 R + 1 m 2 R log m + 1 m + log R + 1 m + π
65 64 4 fmptd φ T :
66 65 ffvelrnda φ n T n
67 1 2 3 4 lgamgulmlem5 φ n y U G n y T n
68 1 2 3 4 lgamgulmlem4 φ seq 1 + T dom
69 5 6 9 34 38 66 67 68 mtest φ seq 1 f + G dom u U
70 1zzd φ seq 1 f + G u U z U O 1
71 8 a1i φ seq 1 f + G u U z U O U V
72 34 adantr φ seq 1 f + G u U z U O G : U
73 37 a1i φ seq 1 f + G u U z U O T V
74 66 adantlr φ seq 1 f + G u U z U O n T n
75 67 adantlr φ seq 1 f + G u U z U O n y U G n y T n
76 68 adantr φ seq 1 f + G u U z U O seq 1 + T dom
77 simpr φ seq 1 f + G u U z U O seq 1 f + G u U z U O
78 5 70 71 72 73 74 75 76 77 mtestbdd φ seq 1 f + G u U z U O r y U z U O y r
79 nfcv _ z abs
80 nffvmpt1 _ z z U O y
81 79 80 nffv _ z z U O y
82 nfcv _ z
83 nfcv _ z r
84 81 82 83 nfbr z z U O y r
85 nfv y z U O z r
86 2fveq3 y = z z U O y = z U O z
87 86 breq1d y = z z U O y r z U O z r
88 84 85 87 cbvralw y U z U O y r z U z U O z r
89 ulmcl seq 1 f + G u U z U O z U O : U
90 89 adantl φ seq 1 f + G u U z U O z U O : U
91 eqid z U O = z U O
92 91 fmpt z U O z U O : U
93 90 92 sylibr φ seq 1 f + G u U z U O z U O
94 91 fvmpt2 z U O z U O z = O
95 94 fveq2d z U O z U O z = O
96 95 breq1d z U O z U O z r O r
97 96 ralimiaa z U O z U z U O z r O r
98 ralbi z U z U O z r O r z U z U O z r z U O r
99 93 97 98 3syl φ seq 1 f + G u U z U O z U z U O z r z U O r
100 88 99 syl5bb φ seq 1 f + G u U z U O y U z U O y r z U O r
101 100 rexbidv φ seq 1 f + G u U z U O r y U z U O y r r z U O r
102 78 101 mpbid φ seq 1 f + G u U z U O r z U O r
103 102 ex φ seq 1 f + G u U z U O r z U O r
104 69 103 jca φ seq 1 f + G dom u U seq 1 f + G u U z U O r z U O r