Metamath Proof Explorer


Theorem lgamgulmlem6

Description: The series G is uniformly convergent on the compact region U , which describes a circle of radius R with holes of size 1 / R around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φR
lgamgulm.u U=x|xRk01Rx+k
lgamgulm.g G=mzUzlogm+1mlogzm+1
lgamgulm.t T=mif2RmR2R+1m2Rlogm+1m+logR+1m+π
Assertion lgamgulmlem6 φseq1f+GdomuUseq1f+GuUzUOrzUOr

Proof

Step Hyp Ref Expression
1 lgamgulm.r φR
2 lgamgulm.u U=x|xRk01Rx+k
3 lgamgulm.g G=mzUzlogm+1mlogzm+1
4 lgamgulm.t T=mif2RmR2R+1m2Rlogm+1m+logR+1m+π
5 nnuz =1
6 1zzd φ1
7 cnex V
8 2 7 rabex2 UV
9 8 a1i φUV
10 1 2 lgamgulmlem1 φU
11 10 ad2antrr φmzUU
12 simpr φmzUzU
13 11 12 sseldd φmzUz
14 13 eldifad φmzUz
15 simplr φmzUm
16 15 peano2nnd φmzUm+1
17 16 nnrpd φmzUm+1+
18 15 nnrpd φmzUm+
19 17 18 rpdivcld φmzUm+1m+
20 19 relogcld φmzUlogm+1m
21 20 recnd φmzUlogm+1m
22 14 21 mulcld φmzUzlogm+1m
23 15 nncnd φmzUm
24 15 nnne0d φmzUm0
25 14 23 24 divcld φmzUzm
26 1cnd φmzU1
27 25 26 addcld φmzUzm+1
28 13 15 dmgmdivn0 φmzUzm+10
29 27 28 logcld φmzUlogzm+1
30 22 29 subcld φmzUzlogm+1mlogzm+1
31 30 fmpttd φmzUzlogm+1mlogzm+1:U
32 7 8 elmap zUzlogm+1mlogzm+1UzUzlogm+1mlogzm+1:U
33 31 32 sylibr φmzUzlogm+1mlogzm+1U
34 33 3 fmptd φG:U
35 nnex V
36 35 mptex mif2RmR2R+1m2Rlogm+1m+logR+1m+πV
37 4 36 eqeltri TV
38 37 a1i φTV
39 1 adantr φmR
40 39 nnred φmR
41 2re 2
42 41 a1i φm2
43 1red φm1
44 40 43 readdcld φmR+1
45 42 44 remulcld φm2R+1
46 simpr φmm
47 46 nnsqcld φmm2
48 45 47 nndivred φm2R+1m2
49 40 48 remulcld φmR2R+1m2
50 46 peano2nnd φmm+1
51 50 nnrpd φmm+1+
52 46 nnrpd φmm+
53 51 52 rpdivcld φmm+1m+
54 53 relogcld φmlogm+1m
55 40 54 remulcld φmRlogm+1m
56 39 peano2nnd φmR+1
57 56 nnrpd φmR+1+
58 57 52 rpmulcld φmR+1m+
59 58 relogcld φmlogR+1m
60 pire π
61 60 a1i φmπ
62 59 61 readdcld φmlogR+1m+π
63 55 62 readdcld φmRlogm+1m+logR+1m+π
64 49 63 ifcld φmif2RmR2R+1m2Rlogm+1m+logR+1m+π
65 64 4 fmptd φT:
66 65 ffvelcdmda φnTn
67 1 2 3 4 lgamgulmlem5 φnyUGnyTn
68 1 2 3 4 lgamgulmlem4 φseq1+Tdom
69 5 6 9 34 38 66 67 68 mtest φseq1f+GdomuU
70 1zzd φseq1f+GuUzUO1
71 8 a1i φseq1f+GuUzUOUV
72 34 adantr φseq1f+GuUzUOG:U
73 37 a1i φseq1f+GuUzUOTV
74 66 adantlr φseq1f+GuUzUOnTn
75 67 adantlr φseq1f+GuUzUOnyUGnyTn
76 68 adantr φseq1f+GuUzUOseq1+Tdom
77 simpr φseq1f+GuUzUOseq1f+GuUzUO
78 5 70 71 72 73 74 75 76 77 mtestbdd φseq1f+GuUzUOryUzUOyr
79 nfcv _zabs
80 nffvmpt1 _zzUOy
81 79 80 nffv _zzUOy
82 nfcv _z
83 nfcv _zr
84 81 82 83 nfbr zzUOyr
85 nfv yzUOzr
86 2fveq3 y=zzUOy=zUOz
87 86 breq1d y=zzUOyrzUOzr
88 84 85 87 cbvralw yUzUOyrzUzUOzr
89 ulmcl seq1f+GuUzUOzUO:U
90 89 adantl φseq1f+GuUzUOzUO:U
91 eqid zUO=zUO
92 91 fmpt zUOzUO:U
93 90 92 sylibr φseq1f+GuUzUOzUO
94 91 fvmpt2 zUOzUOz=O
95 94 fveq2d zUOzUOz=O
96 95 breq1d zUOzUOzrOr
97 96 ralimiaa zUOzUzUOzrOr
98 ralbi zUzUOzrOrzUzUOzrzUOr
99 93 97 98 3syl φseq1f+GuUzUOzUzUOzrzUOr
100 88 99 bitrid φseq1f+GuUzUOyUzUOyrzUOr
101 100 rexbidv φseq1f+GuUzUOryUzUOyrrzUOr
102 78 101 mpbid φseq1f+GuUzUOrzUOr
103 102 ex φseq1f+GuUzUOrzUOr
104 69 103 jca φseq1f+GdomuUseq1f+GuUzUOrzUOr