Metamath Proof Explorer


Theorem lgamgulmlem4

Description: Lemma for lgamgulm . (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φ R
lgamgulm.u U = x | x R k 0 1 R x + k
lgamgulm.g G = m z U z log m + 1 m log z m + 1
lgamgulm.t T = m if 2 R m R 2 R + 1 m 2 R log m + 1 m + log R + 1 m + π
Assertion lgamgulmlem4 φ seq 1 + T dom

Proof

Step Hyp Ref Expression
1 lgamgulm.r φ R
2 lgamgulm.u U = x | x R k 0 1 R x + k
3 lgamgulm.g G = m z U z log m + 1 m log z m + 1
4 lgamgulm.t T = m if 2 R m R 2 R + 1 m 2 R log m + 1 m + log R + 1 m + π
5 2nn 2
6 5 a1i φ 2
7 6 1 nnmulcld φ 2 R
8 7 nnzd φ 2 R
9 eluzle n 2 R 2 R n
10 9 adantl φ n 2 R 2 R n
11 10 iftrued φ n 2 R if 2 R n R 2 R + 1 n 2 R log n + 1 n + log R + 1 n + π = R 2 R + 1 n 2
12 eluznn 2 R n 2 R n
13 7 12 sylan φ n 2 R n
14 breq2 m = n 2 R m 2 R n
15 oveq1 m = n m 2 = n 2
16 15 oveq2d m = n 2 R + 1 m 2 = 2 R + 1 n 2
17 16 oveq2d m = n R 2 R + 1 m 2 = R 2 R + 1 n 2
18 oveq1 m = n m + 1 = n + 1
19 id m = n m = n
20 18 19 oveq12d m = n m + 1 m = n + 1 n
21 20 fveq2d m = n log m + 1 m = log n + 1 n
22 21 oveq2d m = n R log m + 1 m = R log n + 1 n
23 oveq2 m = n R + 1 m = R + 1 n
24 23 fveq2d m = n log R + 1 m = log R + 1 n
25 24 oveq1d m = n log R + 1 m + π = log R + 1 n + π
26 22 25 oveq12d m = n R log m + 1 m + log R + 1 m + π = R log n + 1 n + log R + 1 n + π
27 14 17 26 ifbieq12d m = n if 2 R m R 2 R + 1 m 2 R log m + 1 m + log R + 1 m + π = if 2 R n R 2 R + 1 n 2 R log n + 1 n + log R + 1 n + π
28 ovex R 2 R + 1 n 2 V
29 ovex R log n + 1 n + log R + 1 n + π V
30 28 29 ifex if 2 R n R 2 R + 1 n 2 R log n + 1 n + log R + 1 n + π V
31 27 4 30 fvmpt n T n = if 2 R n R 2 R + 1 n 2 R log n + 1 n + log R + 1 n + π
32 13 31 syl φ n 2 R T n = if 2 R n R 2 R + 1 n 2 R log n + 1 n + log R + 1 n + π
33 eqid m R 2 R + 1 m 2 = m R 2 R + 1 m 2
34 17 33 28 fvmpt n m R 2 R + 1 m 2 n = R 2 R + 1 n 2
35 13 34 syl φ n 2 R m R 2 R + 1 m 2 n = R 2 R + 1 n 2
36 11 32 35 3eqtr4d φ n 2 R T n = m R 2 R + 1 m 2 n
37 8 36 seqfeq φ seq 2 R + T = seq 2 R + m R 2 R + 1 m 2
38 nnuz = 1
39 1zzd φ 1
40 1 nncnd φ R
41 2cnd φ 2
42 1cnd φ 1
43 40 42 addcld φ R + 1
44 41 43 mulcld φ 2 R + 1
45 40 44 mulcld φ R 2 R + 1
46 1lt2 1 < 2
47 2re 2
48 rere 2 2 = 2
49 47 48 ax-mp 2 = 2
50 46 49 breqtrri 1 < 2
51 50 a1i φ 1 < 2
52 oveq1 m = n m 2 = n 2
53 eqid m m 2 = m m 2
54 ovex n 2 V
55 52 53 54 fvmpt n m m 2 n = n 2
56 55 adantl φ n m m 2 n = n 2
57 41 51 56 zetacvg φ seq 1 + m m 2 dom
58 climdm seq 1 + m m 2 dom seq 1 + m m 2 seq 1 + m m 2
59 57 58 sylib φ seq 1 + m m 2 seq 1 + m m 2
60 simpr φ n n
61 60 nncnd φ n n
62 2cnd φ n 2
63 62 negcld φ n 2
64 61 63 cxpcld φ n n 2
65 56 64 eqeltrd φ n m m 2 n
66 40 adantr φ n R
67 1cnd φ n 1
68 66 67 addcld φ n R + 1
69 62 68 mulcld φ n 2 R + 1
70 66 69 mulcld φ n R 2 R + 1
71 61 sqcld φ n n 2
72 60 nnne0d φ n n 0
73 2z 2
74 73 a1i φ n 2
75 61 72 74 expne0d φ n n 2 0
76 70 71 75 divrecd φ n R 2 R + 1 n 2 = R 2 R + 1 1 n 2
77 66 69 71 75 divassd φ n R 2 R + 1 n 2 = R 2 R + 1 n 2
78 61 72 62 cxpnegd φ n n 2 = 1 n 2
79 61 72 74 cxpexpzd φ n n 2 = n 2
80 79 oveq2d φ n 1 n 2 = 1 n 2
81 78 80 eqtr2d φ n 1 n 2 = n 2
82 81 oveq2d φ n R 2 R + 1 1 n 2 = R 2 R + 1 n 2
83 76 77 82 3eqtr3d φ n R 2 R + 1 n 2 = R 2 R + 1 n 2
84 34 adantl φ n m R 2 R + 1 m 2 n = R 2 R + 1 n 2
85 56 oveq2d φ n R 2 R + 1 m m 2 n = R 2 R + 1 n 2
86 83 84 85 3eqtr4d φ n m R 2 R + 1 m 2 n = R 2 R + 1 m m 2 n
87 38 39 45 59 65 86 isermulc2 φ seq 1 + m R 2 R + 1 m 2 R 2 R + 1 seq 1 + m m 2
88 climrel Rel
89 88 releldmi seq 1 + m R 2 R + 1 m 2 R 2 R + 1 seq 1 + m m 2 seq 1 + m R 2 R + 1 m 2 dom
90 87 89 syl φ seq 1 + m R 2 R + 1 m 2 dom
91 69 71 75 divcld φ n 2 R + 1 n 2
92 66 91 mulcld φ n R 2 R + 1 n 2
93 84 92 eqeltrd φ n m R 2 R + 1 m 2 n
94 38 7 93 iserex φ seq 1 + m R 2 R + 1 m 2 dom seq 2 R + m R 2 R + 1 m 2 dom
95 90 94 mpbid φ seq 2 R + m R 2 R + 1 m 2 dom
96 37 95 eqeltrd φ seq 2 R + T dom
97 31 adantl φ n T n = if 2 R n R 2 R + 1 n 2 R log n + 1 n + log R + 1 n + π
98 1 adantr φ n R
99 98 nnred φ n R
100 47 a1i φ n 2
101 1red φ n 1
102 99 101 readdcld φ n R + 1
103 100 102 remulcld φ n 2 R + 1
104 60 nnsqcld φ n n 2
105 103 104 nndivred φ n 2 R + 1 n 2
106 99 105 remulcld φ n R 2 R + 1 n 2
107 60 peano2nnd φ n n + 1
108 107 nnrpd φ n n + 1 +
109 60 nnrpd φ n n +
110 108 109 rpdivcld φ n n + 1 n +
111 110 relogcld φ n log n + 1 n
112 99 111 remulcld φ n R log n + 1 n
113 98 peano2nnd φ n R + 1
114 113 nnrpd φ n R + 1 +
115 114 109 rpmulcld φ n R + 1 n +
116 115 relogcld φ n log R + 1 n
117 pire π
118 117 a1i φ n π
119 116 118 readdcld φ n log R + 1 n + π
120 112 119 readdcld φ n R log n + 1 n + log R + 1 n + π
121 106 120 ifcld φ n if 2 R n R 2 R + 1 n 2 R log n + 1 n + log R + 1 n + π
122 97 121 eqeltrd φ n T n
123 122 recnd φ n T n
124 38 7 123 iserex φ seq 1 + T dom seq 2 R + T dom
125 96 124 mpbird φ seq 1 + T dom