| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamgulm.r |
|- ( ph -> R e. NN ) |
| 2 |
|
lgamgulm.u |
|- U = { x e. CC | ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) } |
| 3 |
|
lgamgulm.g |
|- G = ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) |
| 4 |
|
lgamgulm.t |
|- T = ( m e. NN |-> if ( ( 2 x. R ) <_ m , ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) , ( ( R x. ( log ` ( ( m + 1 ) / m ) ) ) + ( ( log ` ( ( R + 1 ) x. m ) ) + _pi ) ) ) ) |
| 5 |
|
2nn |
|- 2 e. NN |
| 6 |
5
|
a1i |
|- ( ph -> 2 e. NN ) |
| 7 |
6 1
|
nnmulcld |
|- ( ph -> ( 2 x. R ) e. NN ) |
| 8 |
7
|
nnzd |
|- ( ph -> ( 2 x. R ) e. ZZ ) |
| 9 |
|
eluzle |
|- ( n e. ( ZZ>= ` ( 2 x. R ) ) -> ( 2 x. R ) <_ n ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> ( 2 x. R ) <_ n ) |
| 11 |
10
|
iftrued |
|- ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) |
| 12 |
|
eluznn |
|- ( ( ( 2 x. R ) e. NN /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> n e. NN ) |
| 13 |
7 12
|
sylan |
|- ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> n e. NN ) |
| 14 |
|
breq2 |
|- ( m = n -> ( ( 2 x. R ) <_ m <-> ( 2 x. R ) <_ n ) ) |
| 15 |
|
oveq1 |
|- ( m = n -> ( m ^ 2 ) = ( n ^ 2 ) ) |
| 16 |
15
|
oveq2d |
|- ( m = n -> ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) = ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) |
| 17 |
16
|
oveq2d |
|- ( m = n -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) |
| 18 |
|
oveq1 |
|- ( m = n -> ( m + 1 ) = ( n + 1 ) ) |
| 19 |
|
id |
|- ( m = n -> m = n ) |
| 20 |
18 19
|
oveq12d |
|- ( m = n -> ( ( m + 1 ) / m ) = ( ( n + 1 ) / n ) ) |
| 21 |
20
|
fveq2d |
|- ( m = n -> ( log ` ( ( m + 1 ) / m ) ) = ( log ` ( ( n + 1 ) / n ) ) ) |
| 22 |
21
|
oveq2d |
|- ( m = n -> ( R x. ( log ` ( ( m + 1 ) / m ) ) ) = ( R x. ( log ` ( ( n + 1 ) / n ) ) ) ) |
| 23 |
|
oveq2 |
|- ( m = n -> ( ( R + 1 ) x. m ) = ( ( R + 1 ) x. n ) ) |
| 24 |
23
|
fveq2d |
|- ( m = n -> ( log ` ( ( R + 1 ) x. m ) ) = ( log ` ( ( R + 1 ) x. n ) ) ) |
| 25 |
24
|
oveq1d |
|- ( m = n -> ( ( log ` ( ( R + 1 ) x. m ) ) + _pi ) = ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) |
| 26 |
22 25
|
oveq12d |
|- ( m = n -> ( ( R x. ( log ` ( ( m + 1 ) / m ) ) ) + ( ( log ` ( ( R + 1 ) x. m ) ) + _pi ) ) = ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) |
| 27 |
14 17 26
|
ifbieq12d |
|- ( m = n -> if ( ( 2 x. R ) <_ m , ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) , ( ( R x. ( log ` ( ( m + 1 ) / m ) ) ) + ( ( log ` ( ( R + 1 ) x. m ) ) + _pi ) ) ) = if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) ) |
| 28 |
|
ovex |
|- ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) e. _V |
| 29 |
|
ovex |
|- ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) e. _V |
| 30 |
28 29
|
ifex |
|- if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) e. _V |
| 31 |
27 4 30
|
fvmpt |
|- ( n e. NN -> ( T ` n ) = if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) ) |
| 32 |
13 31
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> ( T ` n ) = if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) ) |
| 33 |
|
eqid |
|- ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) = ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) |
| 34 |
17 33 28
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) |
| 35 |
13 34
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) |
| 36 |
11 32 35
|
3eqtr4d |
|- ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> ( T ` n ) = ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) ) |
| 37 |
8 36
|
seqfeq |
|- ( ph -> seq ( 2 x. R ) ( + , T ) = seq ( 2 x. R ) ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) ) |
| 38 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 39 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 40 |
1
|
nncnd |
|- ( ph -> R e. CC ) |
| 41 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 42 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 43 |
40 42
|
addcld |
|- ( ph -> ( R + 1 ) e. CC ) |
| 44 |
41 43
|
mulcld |
|- ( ph -> ( 2 x. ( R + 1 ) ) e. CC ) |
| 45 |
40 44
|
mulcld |
|- ( ph -> ( R x. ( 2 x. ( R + 1 ) ) ) e. CC ) |
| 46 |
|
1lt2 |
|- 1 < 2 |
| 47 |
|
2re |
|- 2 e. RR |
| 48 |
|
rere |
|- ( 2 e. RR -> ( Re ` 2 ) = 2 ) |
| 49 |
47 48
|
ax-mp |
|- ( Re ` 2 ) = 2 |
| 50 |
46 49
|
breqtrri |
|- 1 < ( Re ` 2 ) |
| 51 |
50
|
a1i |
|- ( ph -> 1 < ( Re ` 2 ) ) |
| 52 |
|
oveq1 |
|- ( m = n -> ( m ^c -u 2 ) = ( n ^c -u 2 ) ) |
| 53 |
|
eqid |
|- ( m e. NN |-> ( m ^c -u 2 ) ) = ( m e. NN |-> ( m ^c -u 2 ) ) |
| 54 |
|
ovex |
|- ( n ^c -u 2 ) e. _V |
| 55 |
52 53 54
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) = ( n ^c -u 2 ) ) |
| 56 |
55
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) = ( n ^c -u 2 ) ) |
| 57 |
41 51 56
|
zetacvg |
|- ( ph -> seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) e. dom ~~> ) |
| 58 |
|
climdm |
|- ( seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) e. dom ~~> <-> seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ~~> ( ~~> ` seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ) ) |
| 59 |
57 58
|
sylib |
|- ( ph -> seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ~~> ( ~~> ` seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ) ) |
| 60 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 61 |
60
|
nncnd |
|- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 62 |
|
2cnd |
|- ( ( ph /\ n e. NN ) -> 2 e. CC ) |
| 63 |
62
|
negcld |
|- ( ( ph /\ n e. NN ) -> -u 2 e. CC ) |
| 64 |
61 63
|
cxpcld |
|- ( ( ph /\ n e. NN ) -> ( n ^c -u 2 ) e. CC ) |
| 65 |
56 64
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) e. CC ) |
| 66 |
40
|
adantr |
|- ( ( ph /\ n e. NN ) -> R e. CC ) |
| 67 |
|
1cnd |
|- ( ( ph /\ n e. NN ) -> 1 e. CC ) |
| 68 |
66 67
|
addcld |
|- ( ( ph /\ n e. NN ) -> ( R + 1 ) e. CC ) |
| 69 |
62 68
|
mulcld |
|- ( ( ph /\ n e. NN ) -> ( 2 x. ( R + 1 ) ) e. CC ) |
| 70 |
66 69
|
mulcld |
|- ( ( ph /\ n e. NN ) -> ( R x. ( 2 x. ( R + 1 ) ) ) e. CC ) |
| 71 |
61
|
sqcld |
|- ( ( ph /\ n e. NN ) -> ( n ^ 2 ) e. CC ) |
| 72 |
60
|
nnne0d |
|- ( ( ph /\ n e. NN ) -> n =/= 0 ) |
| 73 |
|
2z |
|- 2 e. ZZ |
| 74 |
73
|
a1i |
|- ( ( ph /\ n e. NN ) -> 2 e. ZZ ) |
| 75 |
61 72 74
|
expne0d |
|- ( ( ph /\ n e. NN ) -> ( n ^ 2 ) =/= 0 ) |
| 76 |
70 71 75
|
divrecd |
|- ( ( ph /\ n e. NN ) -> ( ( R x. ( 2 x. ( R + 1 ) ) ) / ( n ^ 2 ) ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( 1 / ( n ^ 2 ) ) ) ) |
| 77 |
66 69 71 75
|
divassd |
|- ( ( ph /\ n e. NN ) -> ( ( R x. ( 2 x. ( R + 1 ) ) ) / ( n ^ 2 ) ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) |
| 78 |
61 72 62
|
cxpnegd |
|- ( ( ph /\ n e. NN ) -> ( n ^c -u 2 ) = ( 1 / ( n ^c 2 ) ) ) |
| 79 |
61 72 74
|
cxpexpzd |
|- ( ( ph /\ n e. NN ) -> ( n ^c 2 ) = ( n ^ 2 ) ) |
| 80 |
79
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( 1 / ( n ^c 2 ) ) = ( 1 / ( n ^ 2 ) ) ) |
| 81 |
78 80
|
eqtr2d |
|- ( ( ph /\ n e. NN ) -> ( 1 / ( n ^ 2 ) ) = ( n ^c -u 2 ) ) |
| 82 |
81
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( 1 / ( n ^ 2 ) ) ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( n ^c -u 2 ) ) ) |
| 83 |
76 77 82
|
3eqtr3d |
|- ( ( ph /\ n e. NN ) -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( n ^c -u 2 ) ) ) |
| 84 |
34
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) |
| 85 |
56
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( n ^c -u 2 ) ) ) |
| 86 |
83 84 85
|
3eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) ) ) |
| 87 |
38 39 45 59 65 86
|
isermulc2 |
|- ( ph -> seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) ~~> ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( ~~> ` seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ) ) ) |
| 88 |
|
climrel |
|- Rel ~~> |
| 89 |
88
|
releldmi |
|- ( seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) ~~> ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( ~~> ` seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ) ) -> seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> ) |
| 90 |
87 89
|
syl |
|- ( ph -> seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> ) |
| 91 |
69 71 75
|
divcld |
|- ( ( ph /\ n e. NN ) -> ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) e. CC ) |
| 92 |
66 91
|
mulcld |
|- ( ( ph /\ n e. NN ) -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) e. CC ) |
| 93 |
84 92
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) e. CC ) |
| 94 |
38 7 93
|
iserex |
|- ( ph -> ( seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> <-> seq ( 2 x. R ) ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> ) ) |
| 95 |
90 94
|
mpbid |
|- ( ph -> seq ( 2 x. R ) ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> ) |
| 96 |
37 95
|
eqeltrd |
|- ( ph -> seq ( 2 x. R ) ( + , T ) e. dom ~~> ) |
| 97 |
31
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( T ` n ) = if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) ) |
| 98 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> R e. NN ) |
| 99 |
98
|
nnred |
|- ( ( ph /\ n e. NN ) -> R e. RR ) |
| 100 |
47
|
a1i |
|- ( ( ph /\ n e. NN ) -> 2 e. RR ) |
| 101 |
|
1red |
|- ( ( ph /\ n e. NN ) -> 1 e. RR ) |
| 102 |
99 101
|
readdcld |
|- ( ( ph /\ n e. NN ) -> ( R + 1 ) e. RR ) |
| 103 |
100 102
|
remulcld |
|- ( ( ph /\ n e. NN ) -> ( 2 x. ( R + 1 ) ) e. RR ) |
| 104 |
60
|
nnsqcld |
|- ( ( ph /\ n e. NN ) -> ( n ^ 2 ) e. NN ) |
| 105 |
103 104
|
nndivred |
|- ( ( ph /\ n e. NN ) -> ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) e. RR ) |
| 106 |
99 105
|
remulcld |
|- ( ( ph /\ n e. NN ) -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) e. RR ) |
| 107 |
60
|
peano2nnd |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 108 |
107
|
nnrpd |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. RR+ ) |
| 109 |
60
|
nnrpd |
|- ( ( ph /\ n e. NN ) -> n e. RR+ ) |
| 110 |
108 109
|
rpdivcld |
|- ( ( ph /\ n e. NN ) -> ( ( n + 1 ) / n ) e. RR+ ) |
| 111 |
110
|
relogcld |
|- ( ( ph /\ n e. NN ) -> ( log ` ( ( n + 1 ) / n ) ) e. RR ) |
| 112 |
99 111
|
remulcld |
|- ( ( ph /\ n e. NN ) -> ( R x. ( log ` ( ( n + 1 ) / n ) ) ) e. RR ) |
| 113 |
98
|
peano2nnd |
|- ( ( ph /\ n e. NN ) -> ( R + 1 ) e. NN ) |
| 114 |
113
|
nnrpd |
|- ( ( ph /\ n e. NN ) -> ( R + 1 ) e. RR+ ) |
| 115 |
114 109
|
rpmulcld |
|- ( ( ph /\ n e. NN ) -> ( ( R + 1 ) x. n ) e. RR+ ) |
| 116 |
115
|
relogcld |
|- ( ( ph /\ n e. NN ) -> ( log ` ( ( R + 1 ) x. n ) ) e. RR ) |
| 117 |
|
pire |
|- _pi e. RR |
| 118 |
117
|
a1i |
|- ( ( ph /\ n e. NN ) -> _pi e. RR ) |
| 119 |
116 118
|
readdcld |
|- ( ( ph /\ n e. NN ) -> ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) e. RR ) |
| 120 |
112 119
|
readdcld |
|- ( ( ph /\ n e. NN ) -> ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) e. RR ) |
| 121 |
106 120
|
ifcld |
|- ( ( ph /\ n e. NN ) -> if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) e. RR ) |
| 122 |
97 121
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( T ` n ) e. RR ) |
| 123 |
122
|
recnd |
|- ( ( ph /\ n e. NN ) -> ( T ` n ) e. CC ) |
| 124 |
38 7 123
|
iserex |
|- ( ph -> ( seq 1 ( + , T ) e. dom ~~> <-> seq ( 2 x. R ) ( + , T ) e. dom ~~> ) ) |
| 125 |
96 124
|
mpbird |
|- ( ph -> seq 1 ( + , T ) e. dom ~~> ) |