| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r |  |-  ( ph -> R e. NN ) | 
						
							| 2 |  | lgamgulm.u |  |-  U = { x e. CC | ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) } | 
						
							| 3 |  | lgamgulm.g |  |-  G = ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) | 
						
							| 4 |  | lgamgulm.t |  |-  T = ( m e. NN |-> if ( ( 2 x. R ) <_ m , ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) , ( ( R x. ( log ` ( ( m + 1 ) / m ) ) ) + ( ( log ` ( ( R + 1 ) x. m ) ) + _pi ) ) ) ) | 
						
							| 5 |  | 2nn |  |-  2 e. NN | 
						
							| 6 | 5 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 7 | 6 1 | nnmulcld |  |-  ( ph -> ( 2 x. R ) e. NN ) | 
						
							| 8 | 7 | nnzd |  |-  ( ph -> ( 2 x. R ) e. ZZ ) | 
						
							| 9 |  | eluzle |  |-  ( n e. ( ZZ>= ` ( 2 x. R ) ) -> ( 2 x. R ) <_ n ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> ( 2 x. R ) <_ n ) | 
						
							| 11 | 10 | iftrued |  |-  ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) | 
						
							| 12 |  | eluznn |  |-  ( ( ( 2 x. R ) e. NN /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> n e. NN ) | 
						
							| 13 | 7 12 | sylan |  |-  ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> n e. NN ) | 
						
							| 14 |  | breq2 |  |-  ( m = n -> ( ( 2 x. R ) <_ m <-> ( 2 x. R ) <_ n ) ) | 
						
							| 15 |  | oveq1 |  |-  ( m = n -> ( m ^ 2 ) = ( n ^ 2 ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( m = n -> ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) = ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( m = n -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) | 
						
							| 18 |  | oveq1 |  |-  ( m = n -> ( m + 1 ) = ( n + 1 ) ) | 
						
							| 19 |  | id |  |-  ( m = n -> m = n ) | 
						
							| 20 | 18 19 | oveq12d |  |-  ( m = n -> ( ( m + 1 ) / m ) = ( ( n + 1 ) / n ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( m = n -> ( log ` ( ( m + 1 ) / m ) ) = ( log ` ( ( n + 1 ) / n ) ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( m = n -> ( R x. ( log ` ( ( m + 1 ) / m ) ) ) = ( R x. ( log ` ( ( n + 1 ) / n ) ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( m = n -> ( ( R + 1 ) x. m ) = ( ( R + 1 ) x. n ) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( m = n -> ( log ` ( ( R + 1 ) x. m ) ) = ( log ` ( ( R + 1 ) x. n ) ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( m = n -> ( ( log ` ( ( R + 1 ) x. m ) ) + _pi ) = ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) | 
						
							| 26 | 22 25 | oveq12d |  |-  ( m = n -> ( ( R x. ( log ` ( ( m + 1 ) / m ) ) ) + ( ( log ` ( ( R + 1 ) x. m ) ) + _pi ) ) = ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) | 
						
							| 27 | 14 17 26 | ifbieq12d |  |-  ( m = n -> if ( ( 2 x. R ) <_ m , ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) , ( ( R x. ( log ` ( ( m + 1 ) / m ) ) ) + ( ( log ` ( ( R + 1 ) x. m ) ) + _pi ) ) ) = if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) ) | 
						
							| 28 |  | ovex |  |-  ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) e. _V | 
						
							| 29 |  | ovex |  |-  ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) e. _V | 
						
							| 30 | 28 29 | ifex |  |-  if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) e. _V | 
						
							| 31 | 27 4 30 | fvmpt |  |-  ( n e. NN -> ( T ` n ) = if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) ) | 
						
							| 32 | 13 31 | syl |  |-  ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> ( T ` n ) = if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) ) | 
						
							| 33 |  | eqid |  |-  ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) = ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) | 
						
							| 34 | 17 33 28 | fvmpt |  |-  ( n e. NN -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) | 
						
							| 35 | 13 34 | syl |  |-  ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) | 
						
							| 36 | 11 32 35 | 3eqtr4d |  |-  ( ( ph /\ n e. ( ZZ>= ` ( 2 x. R ) ) ) -> ( T ` n ) = ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) ) | 
						
							| 37 | 8 36 | seqfeq |  |-  ( ph -> seq ( 2 x. R ) ( + , T ) = seq ( 2 x. R ) ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) ) | 
						
							| 38 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 39 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 40 | 1 | nncnd |  |-  ( ph -> R e. CC ) | 
						
							| 41 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 42 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 43 | 40 42 | addcld |  |-  ( ph -> ( R + 1 ) e. CC ) | 
						
							| 44 | 41 43 | mulcld |  |-  ( ph -> ( 2 x. ( R + 1 ) ) e. CC ) | 
						
							| 45 | 40 44 | mulcld |  |-  ( ph -> ( R x. ( 2 x. ( R + 1 ) ) ) e. CC ) | 
						
							| 46 |  | 1lt2 |  |-  1 < 2 | 
						
							| 47 |  | 2re |  |-  2 e. RR | 
						
							| 48 |  | rere |  |-  ( 2 e. RR -> ( Re ` 2 ) = 2 ) | 
						
							| 49 | 47 48 | ax-mp |  |-  ( Re ` 2 ) = 2 | 
						
							| 50 | 46 49 | breqtrri |  |-  1 < ( Re ` 2 ) | 
						
							| 51 | 50 | a1i |  |-  ( ph -> 1 < ( Re ` 2 ) ) | 
						
							| 52 |  | oveq1 |  |-  ( m = n -> ( m ^c -u 2 ) = ( n ^c -u 2 ) ) | 
						
							| 53 |  | eqid |  |-  ( m e. NN |-> ( m ^c -u 2 ) ) = ( m e. NN |-> ( m ^c -u 2 ) ) | 
						
							| 54 |  | ovex |  |-  ( n ^c -u 2 ) e. _V | 
						
							| 55 | 52 53 54 | fvmpt |  |-  ( n e. NN -> ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) = ( n ^c -u 2 ) ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) = ( n ^c -u 2 ) ) | 
						
							| 57 | 41 51 56 | zetacvg |  |-  ( ph -> seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) e. dom ~~> ) | 
						
							| 58 |  | climdm |  |-  ( seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) e. dom ~~> <-> seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ~~> ( ~~> ` seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ) ) | 
						
							| 59 | 57 58 | sylib |  |-  ( ph -> seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ~~> ( ~~> ` seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ) ) | 
						
							| 60 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 61 | 60 | nncnd |  |-  ( ( ph /\ n e. NN ) -> n e. CC ) | 
						
							| 62 |  | 2cnd |  |-  ( ( ph /\ n e. NN ) -> 2 e. CC ) | 
						
							| 63 | 62 | negcld |  |-  ( ( ph /\ n e. NN ) -> -u 2 e. CC ) | 
						
							| 64 | 61 63 | cxpcld |  |-  ( ( ph /\ n e. NN ) -> ( n ^c -u 2 ) e. CC ) | 
						
							| 65 | 56 64 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) e. CC ) | 
						
							| 66 | 40 | adantr |  |-  ( ( ph /\ n e. NN ) -> R e. CC ) | 
						
							| 67 |  | 1cnd |  |-  ( ( ph /\ n e. NN ) -> 1 e. CC ) | 
						
							| 68 | 66 67 | addcld |  |-  ( ( ph /\ n e. NN ) -> ( R + 1 ) e. CC ) | 
						
							| 69 | 62 68 | mulcld |  |-  ( ( ph /\ n e. NN ) -> ( 2 x. ( R + 1 ) ) e. CC ) | 
						
							| 70 | 66 69 | mulcld |  |-  ( ( ph /\ n e. NN ) -> ( R x. ( 2 x. ( R + 1 ) ) ) e. CC ) | 
						
							| 71 | 61 | sqcld |  |-  ( ( ph /\ n e. NN ) -> ( n ^ 2 ) e. CC ) | 
						
							| 72 | 60 | nnne0d |  |-  ( ( ph /\ n e. NN ) -> n =/= 0 ) | 
						
							| 73 |  | 2z |  |-  2 e. ZZ | 
						
							| 74 | 73 | a1i |  |-  ( ( ph /\ n e. NN ) -> 2 e. ZZ ) | 
						
							| 75 | 61 72 74 | expne0d |  |-  ( ( ph /\ n e. NN ) -> ( n ^ 2 ) =/= 0 ) | 
						
							| 76 | 70 71 75 | divrecd |  |-  ( ( ph /\ n e. NN ) -> ( ( R x. ( 2 x. ( R + 1 ) ) ) / ( n ^ 2 ) ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( 1 / ( n ^ 2 ) ) ) ) | 
						
							| 77 | 66 69 71 75 | divassd |  |-  ( ( ph /\ n e. NN ) -> ( ( R x. ( 2 x. ( R + 1 ) ) ) / ( n ^ 2 ) ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) | 
						
							| 78 | 61 72 62 | cxpnegd |  |-  ( ( ph /\ n e. NN ) -> ( n ^c -u 2 ) = ( 1 / ( n ^c 2 ) ) ) | 
						
							| 79 | 61 72 74 | cxpexpzd |  |-  ( ( ph /\ n e. NN ) -> ( n ^c 2 ) = ( n ^ 2 ) ) | 
						
							| 80 | 79 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( 1 / ( n ^c 2 ) ) = ( 1 / ( n ^ 2 ) ) ) | 
						
							| 81 | 78 80 | eqtr2d |  |-  ( ( ph /\ n e. NN ) -> ( 1 / ( n ^ 2 ) ) = ( n ^c -u 2 ) ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( 1 / ( n ^ 2 ) ) ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( n ^c -u 2 ) ) ) | 
						
							| 83 | 76 77 82 | 3eqtr3d |  |-  ( ( ph /\ n e. NN ) -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( n ^c -u 2 ) ) ) | 
						
							| 84 | 34 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) = ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) ) | 
						
							| 85 | 56 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( n ^c -u 2 ) ) ) | 
						
							| 86 | 83 84 85 | 3eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) = ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( ( m e. NN |-> ( m ^c -u 2 ) ) ` n ) ) ) | 
						
							| 87 | 38 39 45 59 65 86 | isermulc2 |  |-  ( ph -> seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) ~~> ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( ~~> ` seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ) ) ) | 
						
							| 88 |  | climrel |  |-  Rel ~~> | 
						
							| 89 | 88 | releldmi |  |-  ( seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) ~~> ( ( R x. ( 2 x. ( R + 1 ) ) ) x. ( ~~> ` seq 1 ( + , ( m e. NN |-> ( m ^c -u 2 ) ) ) ) ) -> seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> ) | 
						
							| 90 | 87 89 | syl |  |-  ( ph -> seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> ) | 
						
							| 91 | 69 71 75 | divcld |  |-  ( ( ph /\ n e. NN ) -> ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) e. CC ) | 
						
							| 92 | 66 91 | mulcld |  |-  ( ( ph /\ n e. NN ) -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) e. CC ) | 
						
							| 93 | 84 92 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ` n ) e. CC ) | 
						
							| 94 | 38 7 93 | iserex |  |-  ( ph -> ( seq 1 ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> <-> seq ( 2 x. R ) ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> ) ) | 
						
							| 95 | 90 94 | mpbid |  |-  ( ph -> seq ( 2 x. R ) ( + , ( m e. NN |-> ( R x. ( ( 2 x. ( R + 1 ) ) / ( m ^ 2 ) ) ) ) ) e. dom ~~> ) | 
						
							| 96 | 37 95 | eqeltrd |  |-  ( ph -> seq ( 2 x. R ) ( + , T ) e. dom ~~> ) | 
						
							| 97 | 31 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( T ` n ) = if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) ) | 
						
							| 98 | 1 | adantr |  |-  ( ( ph /\ n e. NN ) -> R e. NN ) | 
						
							| 99 | 98 | nnred |  |-  ( ( ph /\ n e. NN ) -> R e. RR ) | 
						
							| 100 | 47 | a1i |  |-  ( ( ph /\ n e. NN ) -> 2 e. RR ) | 
						
							| 101 |  | 1red |  |-  ( ( ph /\ n e. NN ) -> 1 e. RR ) | 
						
							| 102 | 99 101 | readdcld |  |-  ( ( ph /\ n e. NN ) -> ( R + 1 ) e. RR ) | 
						
							| 103 | 100 102 | remulcld |  |-  ( ( ph /\ n e. NN ) -> ( 2 x. ( R + 1 ) ) e. RR ) | 
						
							| 104 | 60 | nnsqcld |  |-  ( ( ph /\ n e. NN ) -> ( n ^ 2 ) e. NN ) | 
						
							| 105 | 103 104 | nndivred |  |-  ( ( ph /\ n e. NN ) -> ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) e. RR ) | 
						
							| 106 | 99 105 | remulcld |  |-  ( ( ph /\ n e. NN ) -> ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) e. RR ) | 
						
							| 107 | 60 | peano2nnd |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) | 
						
							| 108 | 107 | nnrpd |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. RR+ ) | 
						
							| 109 | 60 | nnrpd |  |-  ( ( ph /\ n e. NN ) -> n e. RR+ ) | 
						
							| 110 | 108 109 | rpdivcld |  |-  ( ( ph /\ n e. NN ) -> ( ( n + 1 ) / n ) e. RR+ ) | 
						
							| 111 | 110 | relogcld |  |-  ( ( ph /\ n e. NN ) -> ( log ` ( ( n + 1 ) / n ) ) e. RR ) | 
						
							| 112 | 99 111 | remulcld |  |-  ( ( ph /\ n e. NN ) -> ( R x. ( log ` ( ( n + 1 ) / n ) ) ) e. RR ) | 
						
							| 113 | 98 | peano2nnd |  |-  ( ( ph /\ n e. NN ) -> ( R + 1 ) e. NN ) | 
						
							| 114 | 113 | nnrpd |  |-  ( ( ph /\ n e. NN ) -> ( R + 1 ) e. RR+ ) | 
						
							| 115 | 114 109 | rpmulcld |  |-  ( ( ph /\ n e. NN ) -> ( ( R + 1 ) x. n ) e. RR+ ) | 
						
							| 116 | 115 | relogcld |  |-  ( ( ph /\ n e. NN ) -> ( log ` ( ( R + 1 ) x. n ) ) e. RR ) | 
						
							| 117 |  | pire |  |-  _pi e. RR | 
						
							| 118 | 117 | a1i |  |-  ( ( ph /\ n e. NN ) -> _pi e. RR ) | 
						
							| 119 | 116 118 | readdcld |  |-  ( ( ph /\ n e. NN ) -> ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) e. RR ) | 
						
							| 120 | 112 119 | readdcld |  |-  ( ( ph /\ n e. NN ) -> ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) e. RR ) | 
						
							| 121 | 106 120 | ifcld |  |-  ( ( ph /\ n e. NN ) -> if ( ( 2 x. R ) <_ n , ( R x. ( ( 2 x. ( R + 1 ) ) / ( n ^ 2 ) ) ) , ( ( R x. ( log ` ( ( n + 1 ) / n ) ) ) + ( ( log ` ( ( R + 1 ) x. n ) ) + _pi ) ) ) e. RR ) | 
						
							| 122 | 97 121 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( T ` n ) e. RR ) | 
						
							| 123 | 122 | recnd |  |-  ( ( ph /\ n e. NN ) -> ( T ` n ) e. CC ) | 
						
							| 124 | 38 7 123 | iserex |  |-  ( ph -> ( seq 1 ( + , T ) e. dom ~~> <-> seq ( 2 x. R ) ( + , T ) e. dom ~~> ) ) | 
						
							| 125 | 96 124 | mpbird |  |-  ( ph -> seq 1 ( + , T ) e. dom ~~> ) |