| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 2 |  | lgamgulm.u | ⊢ 𝑈  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 3 |  | lgamgulm.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 4 |  | lgamgulm.t | ⊢ 𝑇  =  ( 𝑚  ∈  ℕ  ↦  if ( ( 2  ·  𝑅 )  ≤  𝑚 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) ) ) ) | 
						
							| 5 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ ) | 
						
							| 7 | 6 1 | nnmulcld | ⊢ ( 𝜑  →  ( 2  ·  𝑅 )  ∈  ℕ ) | 
						
							| 8 | 7 | nnzd | ⊢ ( 𝜑  →  ( 2  ·  𝑅 )  ∈  ℤ ) | 
						
							| 9 |  | eluzle | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 2  ·  𝑅 ) )  →  ( 2  ·  𝑅 )  ≤  𝑛 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 2  ·  𝑅 ) ) )  →  ( 2  ·  𝑅 )  ≤  𝑛 ) | 
						
							| 11 | 10 | iftrued | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 2  ·  𝑅 ) ) )  →  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) )  =  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 12 |  | eluznn | ⊢ ( ( ( 2  ·  𝑅 )  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 2  ·  𝑅 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 13 | 7 12 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 2  ·  𝑅 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 14 |  | breq2 | ⊢ ( 𝑚  =  𝑛  →  ( ( 2  ·  𝑅 )  ≤  𝑚  ↔  ( 2  ·  𝑅 )  ≤  𝑛 ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚 ↑ 2 )  =  ( 𝑛 ↑ 2 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) )  =  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) )  =  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  +  1 )  =  ( 𝑛  +  1 ) ) | 
						
							| 19 |  | id | ⊢ ( 𝑚  =  𝑛  →  𝑚  =  𝑛 ) | 
						
							| 20 | 18 19 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  +  1 )  /  𝑚 )  =  ( ( 𝑛  +  1 )  /  𝑛 ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  =  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑅  +  1 )  ·  𝑚 )  =  ( ( 𝑅  +  1 )  ·  𝑛 ) ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  =  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π )  =  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) | 
						
							| 26 | 22 25 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) )  =  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) | 
						
							| 27 | 14 17 26 | ifbieq12d | ⊢ ( 𝑚  =  𝑛  →  if ( ( 2  ·  𝑅 )  ≤  𝑚 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) ) )  =  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) | 
						
							| 28 |  | ovex | ⊢ ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) )  ∈  V | 
						
							| 29 |  | ovex | ⊢ ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) )  ∈  V | 
						
							| 30 | 28 29 | ifex | ⊢ if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) )  ∈  V | 
						
							| 31 | 27 4 30 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑇 ‘ 𝑛 )  =  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) | 
						
							| 32 | 13 31 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 2  ·  𝑅 ) ) )  →  ( 𝑇 ‘ 𝑛 )  =  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) | 
						
							| 34 | 17 33 28 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 )  =  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 35 | 13 34 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 2  ·  𝑅 ) ) )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 )  =  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 36 | 11 32 35 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 2  ·  𝑅 ) ) )  →  ( 𝑇 ‘ 𝑛 )  =  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 37 | 8 36 | seqfeq | ⊢ ( 𝜑  →  seq ( 2  ·  𝑅 ) (  +  ,  𝑇 )  =  seq ( 2  ·  𝑅 ) (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) ) ) | 
						
							| 38 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 39 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 40 | 1 | nncnd | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 41 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 42 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 43 | 40 42 | addcld | ⊢ ( 𝜑  →  ( 𝑅  +  1 )  ∈  ℂ ) | 
						
							| 44 | 41 43 | mulcld | ⊢ ( 𝜑  →  ( 2  ·  ( 𝑅  +  1 ) )  ∈  ℂ ) | 
						
							| 45 | 40 44 | mulcld | ⊢ ( 𝜑  →  ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ∈  ℂ ) | 
						
							| 46 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 47 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 48 |  | rere | ⊢ ( 2  ∈  ℝ  →  ( ℜ ‘ 2 )  =  2 ) | 
						
							| 49 | 47 48 | ax-mp | ⊢ ( ℜ ‘ 2 )  =  2 | 
						
							| 50 | 46 49 | breqtrri | ⊢ 1  <  ( ℜ ‘ 2 ) | 
						
							| 51 | 50 | a1i | ⊢ ( 𝜑  →  1  <  ( ℜ ‘ 2 ) ) | 
						
							| 52 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚 ↑𝑐 - 2 )  =  ( 𝑛 ↑𝑐 - 2 ) ) | 
						
							| 53 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) | 
						
							| 54 |  | ovex | ⊢ ( 𝑛 ↑𝑐 - 2 )  ∈  V | 
						
							| 55 | 52 53 54 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 )  =  ( 𝑛 ↑𝑐 - 2 ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 )  =  ( 𝑛 ↑𝑐 - 2 ) ) | 
						
							| 57 | 41 51 56 | zetacvg | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) )  ∈  dom   ⇝  ) | 
						
							| 58 |  | climdm | ⊢ ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) )  ∈  dom   ⇝   ↔  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) )  ⇝  (  ⇝  ‘ seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) ) ) ) | 
						
							| 59 | 57 58 | sylib | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) )  ⇝  (  ⇝  ‘ seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) ) ) ) | 
						
							| 60 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 61 | 60 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℂ ) | 
						
							| 62 |  | 2cnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  2  ∈  ℂ ) | 
						
							| 63 | 62 | negcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  - 2  ∈  ℂ ) | 
						
							| 64 | 61 63 | cxpcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛 ↑𝑐 - 2 )  ∈  ℂ ) | 
						
							| 65 | 56 64 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 66 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑅  ∈  ℂ ) | 
						
							| 67 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 68 | 66 67 | addcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  +  1 )  ∈  ℂ ) | 
						
							| 69 | 62 68 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2  ·  ( 𝑅  +  1 ) )  ∈  ℂ ) | 
						
							| 70 | 66 69 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ∈  ℂ ) | 
						
							| 71 | 61 | sqcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛 ↑ 2 )  ∈  ℂ ) | 
						
							| 72 | 60 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ≠  0 ) | 
						
							| 73 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 74 | 73 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  2  ∈  ℤ ) | 
						
							| 75 | 61 72 74 | expne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛 ↑ 2 )  ≠  0 ) | 
						
							| 76 | 70 71 75 | divrecd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  /  ( 𝑛 ↑ 2 ) )  =  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ·  ( 1  /  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 77 | 66 69 71 75 | divassd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  /  ( 𝑛 ↑ 2 ) )  =  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 78 | 61 72 62 | cxpnegd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛 ↑𝑐 - 2 )  =  ( 1  /  ( 𝑛 ↑𝑐 2 ) ) ) | 
						
							| 79 | 61 72 74 | cxpexpzd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛 ↑𝑐 2 )  =  ( 𝑛 ↑ 2 ) ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1  /  ( 𝑛 ↑𝑐 2 ) )  =  ( 1  /  ( 𝑛 ↑ 2 ) ) ) | 
						
							| 81 | 78 80 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1  /  ( 𝑛 ↑ 2 ) )  =  ( 𝑛 ↑𝑐 - 2 ) ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ·  ( 1  /  ( 𝑛 ↑ 2 ) ) )  =  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ·  ( 𝑛 ↑𝑐 - 2 ) ) ) | 
						
							| 83 | 76 77 82 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) )  =  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ·  ( 𝑛 ↑𝑐 - 2 ) ) ) | 
						
							| 84 | 34 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 )  =  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 85 | 56 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ·  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 ) )  =  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ·  ( 𝑛 ↑𝑐 - 2 ) ) ) | 
						
							| 86 | 83 84 85 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 )  =  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ·  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 ) ) ) | 
						
							| 87 | 38 39 45 59 65 86 | isermulc2 | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) )  ⇝  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ·  (  ⇝  ‘ seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) ) ) ) ) | 
						
							| 88 |  | climrel | ⊢ Rel   ⇝ | 
						
							| 89 | 88 | releldmi | ⊢ ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) )  ⇝  ( ( 𝑅  ·  ( 2  ·  ( 𝑅  +  1 ) ) )  ·  (  ⇝  ‘ seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑𝑐 - 2 ) ) ) ) )  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 90 | 87 89 | syl | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 91 | 69 71 75 | divcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 92 | 66 91 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 93 | 84 92 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 94 | 38 7 93 | iserex | ⊢ ( 𝜑  →  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) )  ∈  dom   ⇝   ↔  seq ( 2  ·  𝑅 ) (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) )  ∈  dom   ⇝  ) ) | 
						
							| 95 | 90 94 | mpbid | ⊢ ( 𝜑  →  seq ( 2  ·  𝑅 ) (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 96 | 37 95 | eqeltrd | ⊢ ( 𝜑  →  seq ( 2  ·  𝑅 ) (  +  ,  𝑇 )  ∈  dom   ⇝  ) | 
						
							| 97 | 31 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑇 ‘ 𝑛 )  =  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) | 
						
							| 98 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑅  ∈  ℕ ) | 
						
							| 99 | 98 | nnred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑅  ∈  ℝ ) | 
						
							| 100 | 47 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  2  ∈  ℝ ) | 
						
							| 101 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 102 | 99 101 | readdcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  +  1 )  ∈  ℝ ) | 
						
							| 103 | 100 102 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2  ·  ( 𝑅  +  1 ) )  ∈  ℝ ) | 
						
							| 104 | 60 | nnsqcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛 ↑ 2 )  ∈  ℕ ) | 
						
							| 105 | 103 104 | nndivred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 106 | 99 105 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) )  ∈  ℝ ) | 
						
							| 107 | 60 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 108 | 107 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℝ+ ) | 
						
							| 109 | 60 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℝ+ ) | 
						
							| 110 | 108 109 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  +  1 )  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 111 | 110 | relogcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 112 | 99 111 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 113 | 98 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  +  1 )  ∈  ℕ ) | 
						
							| 114 | 113 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  +  1 )  ∈  ℝ+ ) | 
						
							| 115 | 114 109 | rpmulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑅  +  1 )  ·  𝑛 )  ∈  ℝ+ ) | 
						
							| 116 | 115 | relogcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  ∈  ℝ ) | 
						
							| 117 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 118 | 117 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  π  ∈  ℝ ) | 
						
							| 119 | 116 118 | readdcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π )  ∈  ℝ ) | 
						
							| 120 | 112 119 | readdcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) )  ∈  ℝ ) | 
						
							| 121 | 106 120 | ifcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) )  ∈  ℝ ) | 
						
							| 122 | 97 121 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑇 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 123 | 122 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑇 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 124 | 38 7 123 | iserex | ⊢ ( 𝜑  →  ( seq 1 (  +  ,  𝑇 )  ∈  dom   ⇝   ↔  seq ( 2  ·  𝑅 ) (  +  ,  𝑇 )  ∈  dom   ⇝  ) ) | 
						
							| 125 | 96 124 | mpbird | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝑇 )  ∈  dom   ⇝  ) |