| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamgulm.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 2 |
|
lgamgulm.u |
⊢ 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
| 3 |
|
lgamgulm.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) |
| 4 |
|
lgamgulm.t |
⊢ 𝑇 = ( 𝑚 ∈ ℕ ↦ if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) ) |
| 5 |
|
2nn |
⊢ 2 ∈ ℕ |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 7 |
6 1
|
nnmulcld |
⊢ ( 𝜑 → ( 2 · 𝑅 ) ∈ ℕ ) |
| 8 |
7
|
nnzd |
⊢ ( 𝜑 → ( 2 · 𝑅 ) ∈ ℤ ) |
| 9 |
|
eluzle |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 2 · 𝑅 ) ) → ( 2 · 𝑅 ) ≤ 𝑛 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 · 𝑅 ) ) ) → ( 2 · 𝑅 ) ≤ 𝑛 ) |
| 11 |
10
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 · 𝑅 ) ) ) → if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) = ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
| 12 |
|
eluznn |
⊢ ( ( ( 2 · 𝑅 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 · 𝑅 ) ) ) → 𝑛 ∈ ℕ ) |
| 13 |
7 12
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 · 𝑅 ) ) ) → 𝑛 ∈ ℕ ) |
| 14 |
|
breq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 2 · 𝑅 ) ≤ 𝑚 ↔ ( 2 · 𝑅 ) ≤ 𝑛 ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ↑ 2 ) = ( 𝑛 ↑ 2 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) = ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) = ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) ) |
| 19 |
|
id |
⊢ ( 𝑚 = 𝑛 → 𝑚 = 𝑛 ) |
| 20 |
18 19
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑛 + 1 ) / 𝑛 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑅 + 1 ) · 𝑚 ) = ( ( 𝑅 + 1 ) · 𝑛 ) ) |
| 24 |
23
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) = ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) = ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) |
| 26 |
22 25
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) = ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) |
| 27 |
14 17 26
|
ifbieq12d |
⊢ ( 𝑚 = 𝑛 → if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
| 28 |
|
ovex |
⊢ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ∈ V |
| 29 |
|
ovex |
⊢ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ∈ V |
| 30 |
28 29
|
ifex |
⊢ if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ∈ V |
| 31 |
27 4 30
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( 𝑇 ‘ 𝑛 ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
| 32 |
13 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 · 𝑅 ) ) ) → ( 𝑇 ‘ 𝑛 ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
| 33 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) |
| 34 |
17 33 28
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 ) = ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
| 35 |
13 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 · 𝑅 ) ) ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 ) = ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
| 36 |
11 32 35
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 · 𝑅 ) ) ) → ( 𝑇 ‘ 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 ) ) |
| 37 |
8 36
|
seqfeq |
⊢ ( 𝜑 → seq ( 2 · 𝑅 ) ( + , 𝑇 ) = seq ( 2 · 𝑅 ) ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ) ) |
| 38 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 39 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 40 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 41 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 42 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 43 |
40 42
|
addcld |
⊢ ( 𝜑 → ( 𝑅 + 1 ) ∈ ℂ ) |
| 44 |
41 43
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( 𝑅 + 1 ) ) ∈ ℂ ) |
| 45 |
40 44
|
mulcld |
⊢ ( 𝜑 → ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) ∈ ℂ ) |
| 46 |
|
1lt2 |
⊢ 1 < 2 |
| 47 |
|
2re |
⊢ 2 ∈ ℝ |
| 48 |
|
rere |
⊢ ( 2 ∈ ℝ → ( ℜ ‘ 2 ) = 2 ) |
| 49 |
47 48
|
ax-mp |
⊢ ( ℜ ‘ 2 ) = 2 |
| 50 |
46 49
|
breqtrri |
⊢ 1 < ( ℜ ‘ 2 ) |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → 1 < ( ℜ ‘ 2 ) ) |
| 52 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ↑𝑐 - 2 ) = ( 𝑛 ↑𝑐 - 2 ) ) |
| 53 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) |
| 54 |
|
ovex |
⊢ ( 𝑛 ↑𝑐 - 2 ) ∈ V |
| 55 |
52 53 54
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 ) = ( 𝑛 ↑𝑐 - 2 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 ) = ( 𝑛 ↑𝑐 - 2 ) ) |
| 57 |
41 51 56
|
zetacvg |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ) ∈ dom ⇝ ) |
| 58 |
|
climdm |
⊢ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ) ) ) |
| 59 |
57 58
|
sylib |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ) ) ) |
| 60 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 61 |
60
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 62 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℂ ) |
| 63 |
62
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - 2 ∈ ℂ ) |
| 64 |
61 63
|
cxpcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ↑𝑐 - 2 ) ∈ ℂ ) |
| 65 |
56 64
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 66 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑅 ∈ ℂ ) |
| 67 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
| 68 |
66 67
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 + 1 ) ∈ ℂ ) |
| 69 |
62 68
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · ( 𝑅 + 1 ) ) ∈ ℂ ) |
| 70 |
66 69
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) ∈ ℂ ) |
| 71 |
61
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 72 |
60
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 73 |
|
2z |
⊢ 2 ∈ ℤ |
| 74 |
73
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℤ ) |
| 75 |
61 72 74
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ↑ 2 ) ≠ 0 ) |
| 76 |
70 71 75
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) / ( 𝑛 ↑ 2 ) ) = ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) · ( 1 / ( 𝑛 ↑ 2 ) ) ) ) |
| 77 |
66 69 71 75
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) / ( 𝑛 ↑ 2 ) ) = ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
| 78 |
61 72 62
|
cxpnegd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ↑𝑐 - 2 ) = ( 1 / ( 𝑛 ↑𝑐 2 ) ) ) |
| 79 |
61 72 74
|
cxpexpzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ↑𝑐 2 ) = ( 𝑛 ↑ 2 ) ) |
| 80 |
79
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / ( 𝑛 ↑𝑐 2 ) ) = ( 1 / ( 𝑛 ↑ 2 ) ) ) |
| 81 |
78 80
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / ( 𝑛 ↑ 2 ) ) = ( 𝑛 ↑𝑐 - 2 ) ) |
| 82 |
81
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) · ( 1 / ( 𝑛 ↑ 2 ) ) ) = ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) · ( 𝑛 ↑𝑐 - 2 ) ) ) |
| 83 |
76 77 82
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) = ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) · ( 𝑛 ↑𝑐 - 2 ) ) ) |
| 84 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 ) = ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
| 85 |
56
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) · ( ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 ) ) = ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) · ( 𝑛 ↑𝑐 - 2 ) ) ) |
| 86 |
83 84 85
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 ) = ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) · ( ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ‘ 𝑛 ) ) ) |
| 87 |
38 39 45 59 65 86
|
isermulc2 |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ) ⇝ ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) · ( ⇝ ‘ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ) ) ) ) |
| 88 |
|
climrel |
⊢ Rel ⇝ |
| 89 |
88
|
releldmi |
⊢ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ) ⇝ ( ( 𝑅 · ( 2 · ( 𝑅 + 1 ) ) ) · ( ⇝ ‘ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑𝑐 - 2 ) ) ) ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ) ∈ dom ⇝ ) |
| 90 |
87 89
|
syl |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ) ∈ dom ⇝ ) |
| 91 |
69 71 75
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ∈ ℂ ) |
| 92 |
66 91
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ∈ ℂ ) |
| 93 |
84 92
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 94 |
38 7 93
|
iserex |
⊢ ( 𝜑 → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ) ∈ dom ⇝ ↔ seq ( 2 · 𝑅 ) ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ) ∈ dom ⇝ ) ) |
| 95 |
90 94
|
mpbid |
⊢ ( 𝜑 → seq ( 2 · 𝑅 ) ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ) ) ∈ dom ⇝ ) |
| 96 |
37 95
|
eqeltrd |
⊢ ( 𝜑 → seq ( 2 · 𝑅 ) ( + , 𝑇 ) ∈ dom ⇝ ) |
| 97 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ 𝑛 ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
| 98 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑅 ∈ ℕ ) |
| 99 |
98
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑅 ∈ ℝ ) |
| 100 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℝ ) |
| 101 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℝ ) |
| 102 |
99 101
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 + 1 ) ∈ ℝ ) |
| 103 |
100 102
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · ( 𝑅 + 1 ) ) ∈ ℝ ) |
| 104 |
60
|
nnsqcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ↑ 2 ) ∈ ℕ ) |
| 105 |
103 104
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ∈ ℝ ) |
| 106 |
99 105
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ∈ ℝ ) |
| 107 |
60
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 108 |
107
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℝ+ ) |
| 109 |
60
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ ) |
| 110 |
108 109
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / 𝑛 ) ∈ ℝ+ ) |
| 111 |
110
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℝ ) |
| 112 |
99 111
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ∈ ℝ ) |
| 113 |
98
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 + 1 ) ∈ ℕ ) |
| 114 |
113
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 + 1 ) ∈ ℝ+ ) |
| 115 |
114 109
|
rpmulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑅 + 1 ) · 𝑛 ) ∈ ℝ+ ) |
| 116 |
115
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ∈ ℝ ) |
| 117 |
|
pire |
⊢ π ∈ ℝ |
| 118 |
117
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℝ ) |
| 119 |
116 118
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ∈ ℝ ) |
| 120 |
112 119
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ∈ ℝ ) |
| 121 |
106 120
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ∈ ℝ ) |
| 122 |
97 121
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ 𝑛 ) ∈ ℝ ) |
| 123 |
122
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ 𝑛 ) ∈ ℂ ) |
| 124 |
38 7 123
|
iserex |
⊢ ( 𝜑 → ( seq 1 ( + , 𝑇 ) ∈ dom ⇝ ↔ seq ( 2 · 𝑅 ) ( + , 𝑇 ) ∈ dom ⇝ ) ) |
| 125 |
96 124
|
mpbird |
⊢ ( 𝜑 → seq 1 ( + , 𝑇 ) ∈ dom ⇝ ) |