| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamgulm.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 2 |
|
lgamgulm.u |
⊢ 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
| 3 |
|
lgamgulm.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) |
| 4 |
|
lgamgulm.t |
⊢ 𝑇 = ( 𝑚 ∈ ℕ ↦ if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) ) |
| 5 |
|
breq2 |
⊢ ( ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) → ( ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ↔ ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) ) |
| 6 |
|
breq2 |
⊢ ( ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) → ( ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ↔ ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ ℕ ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → 𝑅 ∈ ℕ ) |
| 9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( abs ‘ 𝑥 ) = ( abs ‘ 𝑡 ) ) |
| 10 |
9
|
breq1d |
⊢ ( 𝑥 = 𝑡 → ( ( abs ‘ 𝑥 ) ≤ 𝑅 ↔ ( abs ‘ 𝑡 ) ≤ 𝑅 ) ) |
| 11 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑡 → ( abs ‘ ( 𝑥 + 𝑘 ) ) = ( abs ‘ ( 𝑡 + 𝑘 ) ) ) |
| 12 |
11
|
breq2d |
⊢ ( 𝑥 = 𝑡 → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) ) |
| 13 |
12
|
ralbidv |
⊢ ( 𝑥 = 𝑡 → ( ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) ) |
| 14 |
10 13
|
anbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ↔ ( ( abs ‘ 𝑡 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) ) ) |
| 15 |
14
|
cbvrabv |
⊢ { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } = { 𝑡 ∈ ℂ ∣ ( ( abs ‘ 𝑡 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) } |
| 16 |
2 15
|
eqtri |
⊢ 𝑈 = { 𝑡 ∈ ℂ ∣ ( ( abs ‘ 𝑡 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) } |
| 17 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → 𝑛 ∈ ℕ ) |
| 18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → 𝑦 ∈ 𝑈 ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → ( 2 · 𝑅 ) ≤ 𝑛 ) |
| 21 |
8 16 17 19 20
|
lgamgulmlem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
| 22 |
1 2
|
lgamgulmlem1 |
⊢ ( 𝜑 → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 24 |
23 18
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 25 |
24
|
eldifad |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ ℂ ) |
| 26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℕ ) |
| 27 |
26
|
peano2nnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 28 |
27
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑛 + 1 ) ∈ ℝ+ ) |
| 29 |
26
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℝ+ ) |
| 30 |
28 29
|
rpdivcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑛 + 1 ) / 𝑛 ) ∈ ℝ+ ) |
| 31 |
30
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℝ ) |
| 32 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℂ ) |
| 33 |
25 32
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ∈ ℂ ) |
| 34 |
26
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℂ ) |
| 35 |
26
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ≠ 0 ) |
| 36 |
25 34 35
|
divcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 / 𝑛 ) ∈ ℂ ) |
| 37 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ∈ ℂ ) |
| 38 |
36 37
|
addcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 / 𝑛 ) + 1 ) ∈ ℂ ) |
| 39 |
24 26
|
dmgmdivn0 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 / 𝑛 ) + 1 ) ≠ 0 ) |
| 40 |
38 39
|
logcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 41 |
33 40
|
subcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
| 42 |
41
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ∈ ℝ ) |
| 43 |
33
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) ∈ ℝ ) |
| 44 |
40
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ ℝ ) |
| 45 |
43 44
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) + ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ∈ ℝ ) |
| 46 |
7
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ ℝ ) |
| 47 |
46 31
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ∈ ℝ ) |
| 48 |
7
|
peano2nnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ∈ ℕ ) |
| 49 |
48
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ∈ ℝ+ ) |
| 50 |
49 29
|
rpmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑅 + 1 ) · 𝑛 ) ∈ ℝ+ ) |
| 51 |
50
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ∈ ℝ ) |
| 52 |
|
pire |
⊢ π ∈ ℝ |
| 53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → π ∈ ℝ ) |
| 54 |
51 53
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ∈ ℝ ) |
| 55 |
47 54
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ∈ ℝ ) |
| 56 |
33 40
|
abs2dif2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) + ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ) |
| 57 |
25 32
|
absmuld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) = ( ( abs ‘ 𝑦 ) · ( abs ‘ ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) ) |
| 58 |
30
|
rpred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑛 + 1 ) / 𝑛 ) ∈ ℝ ) |
| 59 |
34
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 · 𝑛 ) = 𝑛 ) |
| 60 |
26
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℝ ) |
| 61 |
60
|
lep1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ≤ ( 𝑛 + 1 ) ) |
| 62 |
59 61
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 · 𝑛 ) ≤ ( 𝑛 + 1 ) ) |
| 63 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ∈ ℝ ) |
| 64 |
60 63
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 65 |
63 64 29
|
lemuldivd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 1 · 𝑛 ) ≤ ( 𝑛 + 1 ) ↔ 1 ≤ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
| 66 |
62 65
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ≤ ( ( 𝑛 + 1 ) / 𝑛 ) ) |
| 67 |
58 66
|
logge0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
| 68 |
31 67
|
absidd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) = ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) · ( abs ‘ ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) = ( ( abs ‘ 𝑦 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
| 70 |
57 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) = ( ( abs ‘ 𝑦 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
| 71 |
25
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
| 72 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ 𝑥 ) = ( abs ‘ 𝑦 ) ) |
| 73 |
72
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ 𝑥 ) ≤ 𝑅 ↔ ( abs ‘ 𝑦 ) ≤ 𝑅 ) ) |
| 74 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( 𝑥 + 𝑘 ) ) = ( abs ‘ ( 𝑦 + 𝑘 ) ) ) |
| 75 |
74
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) |
| 76 |
75
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) |
| 77 |
73 76
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ↔ ( ( abs ‘ 𝑦 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) ) |
| 78 |
77 2
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑈 ↔ ( 𝑦 ∈ ℂ ∧ ( ( abs ‘ 𝑦 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) ) |
| 79 |
78
|
simprbi |
⊢ ( 𝑦 ∈ 𝑈 → ( ( abs ‘ 𝑦 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) |
| 80 |
79
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) |
| 81 |
80
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ 𝑦 ) ≤ 𝑅 ) |
| 82 |
71 46 31 67 81
|
lemul1ad |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ≤ ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
| 83 |
70 82
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) ≤ ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
| 84 |
38 39
|
absrpcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ∈ ℝ+ ) |
| 85 |
84
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ ℝ ) |
| 86 |
85
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
| 87 |
86
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ∈ ℝ ) |
| 88 |
87 53
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) + π ) ∈ ℝ ) |
| 89 |
|
abslogle |
⊢ ( ( ( ( 𝑦 / 𝑛 ) + 1 ) ∈ ℂ ∧ ( ( 𝑦 / 𝑛 ) + 1 ) ≠ 0 ) → ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) + π ) ) |
| 90 |
38 39 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) + π ) ) |
| 91 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 92 |
|
relogdiv |
⊢ ( ( 1 ∈ ℝ+ ∧ ( ( 𝑅 + 1 ) · 𝑛 ) ∈ ℝ+ ) → ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) = ( ( log ‘ 1 ) − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) |
| 93 |
91 50 92
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) = ( ( log ‘ 1 ) − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) |
| 94 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 95 |
94
|
oveq1i |
⊢ ( ( log ‘ 1 ) − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) = ( 0 − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
| 96 |
|
df-neg |
⊢ - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) = ( 0 − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
| 97 |
95 96
|
eqtr4i |
⊢ ( ( log ‘ 1 ) − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) = - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) |
| 98 |
93 97
|
eqtr2di |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) = ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) |
| 99 |
48
|
nnrecred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( 𝑅 + 1 ) ) ∈ ℝ ) |
| 100 |
25 34
|
addcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 + 𝑛 ) ∈ ℂ ) |
| 101 |
100
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 + 𝑛 ) ) ∈ ℝ ) |
| 102 |
7
|
nnrecred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / 𝑅 ) ∈ ℝ ) |
| 103 |
7
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ ℝ+ ) |
| 104 |
|
0le1 |
⊢ 0 ≤ 1 |
| 105 |
104
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ 1 ) |
| 106 |
46
|
lep1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ≤ ( 𝑅 + 1 ) ) |
| 107 |
103 49 63 105 106
|
lediv2ad |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( 𝑅 + 1 ) ) ≤ ( 1 / 𝑅 ) ) |
| 108 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑦 + 𝑘 ) = ( 𝑦 + 𝑛 ) ) |
| 109 |
108
|
fveq2d |
⊢ ( 𝑘 = 𝑛 → ( abs ‘ ( 𝑦 + 𝑘 ) ) = ( abs ‘ ( 𝑦 + 𝑛 ) ) ) |
| 110 |
109
|
breq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ↔ ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑛 ) ) ) ) |
| 111 |
80
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) |
| 112 |
26
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℕ0 ) |
| 113 |
110 111 112
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑛 ) ) ) |
| 114 |
99 102 101 107 113
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( 𝑅 + 1 ) ) ≤ ( abs ‘ ( 𝑦 + 𝑛 ) ) ) |
| 115 |
99 101 29 114
|
lediv1dd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 1 / ( 𝑅 + 1 ) ) / 𝑛 ) ≤ ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / 𝑛 ) ) |
| 116 |
48
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ∈ ℂ ) |
| 117 |
48
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ≠ 0 ) |
| 118 |
116 34 117 35
|
recdiv2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 1 / ( 𝑅 + 1 ) ) / 𝑛 ) = ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
| 119 |
25 34 34 35
|
divdird |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 + 𝑛 ) / 𝑛 ) = ( ( 𝑦 / 𝑛 ) + ( 𝑛 / 𝑛 ) ) ) |
| 120 |
34 35
|
dividd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑛 / 𝑛 ) = 1 ) |
| 121 |
120
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 / 𝑛 ) + ( 𝑛 / 𝑛 ) ) = ( ( 𝑦 / 𝑛 ) + 1 ) ) |
| 122 |
119 121
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 / 𝑛 ) + 1 ) = ( ( 𝑦 + 𝑛 ) / 𝑛 ) ) |
| 123 |
122
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) = ( abs ‘ ( ( 𝑦 + 𝑛 ) / 𝑛 ) ) ) |
| 124 |
100 34 35
|
absdivd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 + 𝑛 ) / 𝑛 ) ) = ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / ( abs ‘ 𝑛 ) ) ) |
| 125 |
29
|
rpge0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ 𝑛 ) |
| 126 |
60 125
|
absidd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
| 127 |
126
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / 𝑛 ) ) |
| 128 |
123 124 127
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / 𝑛 ) = ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) |
| 129 |
115 118 128
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ≤ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) |
| 130 |
50
|
rpreccld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ∈ ℝ+ ) |
| 131 |
130 84
|
logled |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ≤ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ↔ ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ≤ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ) |
| 132 |
129 131
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ≤ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
| 133 |
98 132
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ≤ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
| 134 |
38
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 135 |
46 63
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ∈ ℝ ) |
| 136 |
50
|
rpred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑅 + 1 ) · 𝑛 ) ∈ ℝ ) |
| 137 |
36
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 / 𝑛 ) ) ∈ ℝ ) |
| 138 |
137 63
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + 1 ) ∈ ℝ ) |
| 139 |
36 37
|
abstrid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + ( abs ‘ 1 ) ) ) |
| 140 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 141 |
140
|
oveq2i |
⊢ ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + ( abs ‘ 1 ) ) = ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + 1 ) |
| 142 |
139 141
|
breqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + 1 ) ) |
| 143 |
91
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ∈ ℝ+ ) |
| 144 |
25
|
absge0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ ( abs ‘ 𝑦 ) ) |
| 145 |
26
|
nnge1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ≤ 𝑛 ) |
| 146 |
71 46 143 60 144 81 145
|
lediv12ad |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) / 𝑛 ) ≤ ( 𝑅 / 1 ) ) |
| 147 |
25 34 35
|
absdivd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 / 𝑛 ) ) = ( ( abs ‘ 𝑦 ) / ( abs ‘ 𝑛 ) ) ) |
| 148 |
126
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ 𝑦 ) / 𝑛 ) ) |
| 149 |
147 148
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) / 𝑛 ) = ( abs ‘ ( 𝑦 / 𝑛 ) ) ) |
| 150 |
7
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ ℂ ) |
| 151 |
150
|
div1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 / 1 ) = 𝑅 ) |
| 152 |
146 149 151
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 / 𝑛 ) ) ≤ 𝑅 ) |
| 153 |
137 46 63 152
|
leadd1dd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + 1 ) ≤ ( 𝑅 + 1 ) ) |
| 154 |
134 138 135 142 153
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( 𝑅 + 1 ) ) |
| 155 |
49
|
rpge0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ ( 𝑅 + 1 ) ) |
| 156 |
135 60 155 145
|
lemulge11d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ≤ ( ( 𝑅 + 1 ) · 𝑛 ) ) |
| 157 |
134 135 136 154 156
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( ( 𝑅 + 1 ) · 𝑛 ) ) |
| 158 |
84 50
|
logled |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( ( 𝑅 + 1 ) · 𝑛 ) ↔ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) |
| 159 |
157 158
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
| 160 |
85 51
|
absled |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ↔ ( - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ≤ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∧ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) ) |
| 161 |
133 159 160
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
| 162 |
87 51 53 161
|
leadd1dd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) + π ) ≤ ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) |
| 163 |
44 88 54 90 162
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) |
| 164 |
43 44 47 54 83 163
|
le2addd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) + ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) |
| 165 |
42 45 55 56 164
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) |
| 166 |
165
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ¬ ( 2 · 𝑅 ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) |
| 167 |
5 6 21 166
|
ifbothda |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
| 168 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) ) |
| 169 |
|
id |
⊢ ( 𝑚 = 𝑛 → 𝑚 = 𝑛 ) |
| 170 |
168 169
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑛 + 1 ) / 𝑛 ) ) |
| 171 |
170
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
| 172 |
171
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
| 173 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 / 𝑚 ) = ( 𝑧 / 𝑛 ) ) |
| 174 |
173
|
fvoveq1d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) = ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) |
| 175 |
172 174
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) = ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) |
| 176 |
175
|
mpteq2dv |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) = ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ) |
| 177 |
|
cnex |
⊢ ℂ ∈ V |
| 178 |
2 177
|
rabex2 |
⊢ 𝑈 ∈ V |
| 179 |
178
|
mptex |
⊢ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ∈ V |
| 180 |
176 3 179
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( 𝐺 ‘ 𝑛 ) = ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ) |
| 181 |
180
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ) |
| 182 |
181
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ‘ 𝑦 ) ) |
| 183 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) = ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
| 184 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 / 𝑛 ) = ( 𝑦 / 𝑛 ) ) |
| 185 |
184
|
fvoveq1d |
⊢ ( 𝑧 = 𝑦 → ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) = ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) |
| 186 |
183 185
|
oveq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) = ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
| 187 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) = ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) |
| 188 |
|
ovex |
⊢ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ V |
| 189 |
186 187 188
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑈 → ( ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
| 190 |
189
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
| 191 |
182 190
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
| 192 |
191
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ) |
| 193 |
|
breq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 2 · 𝑅 ) ≤ 𝑚 ↔ ( 2 · 𝑅 ) ≤ 𝑛 ) ) |
| 194 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ↑ 2 ) = ( 𝑛 ↑ 2 ) ) |
| 195 |
194
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) = ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) |
| 196 |
195
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) = ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
| 197 |
171
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
| 198 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑅 + 1 ) · 𝑚 ) = ( ( 𝑅 + 1 ) · 𝑛 ) ) |
| 199 |
198
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) = ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
| 200 |
199
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) = ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) |
| 201 |
197 200
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) = ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) |
| 202 |
193 196 201
|
ifbieq12d |
⊢ ( 𝑚 = 𝑛 → if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
| 203 |
|
ovex |
⊢ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ∈ V |
| 204 |
|
ovex |
⊢ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ∈ V |
| 205 |
203 204
|
ifex |
⊢ if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ∈ V |
| 206 |
202 4 205
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( 𝑇 ‘ 𝑛 ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
| 207 |
206
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑇 ‘ 𝑛 ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
| 208 |
167 192 207
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) ) ≤ ( 𝑇 ‘ 𝑛 ) ) |