| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 2 |  | lgamgulm.u | ⊢ 𝑈  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 3 |  | lgamgulm.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 4 |  | lgamgulm.t | ⊢ 𝑇  =  ( 𝑚  ∈  ℕ  ↦  if ( ( 2  ·  𝑅 )  ≤  𝑚 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) ) ) ) | 
						
							| 5 |  | breq2 | ⊢ ( ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) )  =  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) )  →  ( ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) )  ↔  ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) ) | 
						
							| 6 |  | breq2 | ⊢ ( ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) )  =  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) )  →  ( ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) )  ↔  ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) ) | 
						
							| 7 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑅  ∈  ℕ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 2  ·  𝑅 )  ≤  𝑛 )  →  𝑅  ∈  ℕ ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 𝑡 ) ) | 
						
							| 10 | 9 | breq1d | ⊢ ( 𝑥  =  𝑡  →  ( ( abs ‘ 𝑥 )  ≤  𝑅  ↔  ( abs ‘ 𝑡 )  ≤  𝑅 ) ) | 
						
							| 11 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑡  →  ( abs ‘ ( 𝑥  +  𝑘 ) )  =  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) | 
						
							| 12 | 11 | breq2d | ⊢ ( 𝑥  =  𝑡  →  ( ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  ↔  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑥  =  𝑡  →  ( ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  ↔  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) ) | 
						
							| 14 | 10 13 | anbi12d | ⊢ ( 𝑥  =  𝑡  →  ( ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) )  ↔  ( ( abs ‘ 𝑡 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) ) ) | 
						
							| 15 | 14 | cbvrabv | ⊢ { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) }  =  { 𝑡  ∈  ℂ  ∣  ( ( abs ‘ 𝑡 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) } | 
						
							| 16 | 2 15 | eqtri | ⊢ 𝑈  =  { 𝑡  ∈  ℂ  ∣  ( ( abs ‘ 𝑡 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) } | 
						
							| 17 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 2  ·  𝑅 )  ≤  𝑛 )  →  𝑛  ∈  ℕ ) | 
						
							| 18 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑦  ∈  𝑈 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 2  ·  𝑅 )  ≤  𝑛 )  →  𝑦  ∈  𝑈 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 2  ·  𝑅 )  ≤  𝑛 )  →  ( 2  ·  𝑅 )  ≤  𝑛 ) | 
						
							| 21 | 8 16 17 19 20 | lgamgulmlem3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 2  ·  𝑅 )  ≤  𝑛 )  →  ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 22 | 1 2 | lgamgulmlem1 | ⊢ ( 𝜑  →  𝑈  ⊆  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑈  ⊆  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 24 | 23 18 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑦  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 25 | 24 | eldifad | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 26 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 27 | 26 | peano2nnd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 28 | 27 | nnrpd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑛  +  1 )  ∈  ℝ+ ) | 
						
							| 29 | 26 | nnrpd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 30 | 28 29 | rpdivcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑛  +  1 )  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 31 | 30 | relogcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 32 | 31 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 33 | 25 32 | mulcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 34 | 26 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑛  ∈  ℂ ) | 
						
							| 35 | 26 | nnne0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑛  ≠  0 ) | 
						
							| 36 | 25 34 35 | divcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑦  /  𝑛 )  ∈  ℂ ) | 
						
							| 37 |  | 1cnd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  1  ∈  ℂ ) | 
						
							| 38 | 36 37 | addcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑦  /  𝑛 )  +  1 )  ∈  ℂ ) | 
						
							| 39 | 24 26 | dmgmdivn0 | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑦  /  𝑛 )  +  1 )  ≠  0 ) | 
						
							| 40 | 38 39 | logcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 41 | 33 40 | subcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 42 | 41 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 43 | 33 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 44 | 40 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 45 | 43 44 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  +  ( abs ‘ ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 46 | 7 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑅  ∈  ℝ ) | 
						
							| 47 | 46 31 | remulcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 48 | 7 | peano2nnd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑅  +  1 )  ∈  ℕ ) | 
						
							| 49 | 48 | nnrpd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑅  +  1 )  ∈  ℝ+ ) | 
						
							| 50 | 49 29 | rpmulcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑅  +  1 )  ·  𝑛 )  ∈  ℝ+ ) | 
						
							| 51 | 50 | relogcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  ∈  ℝ ) | 
						
							| 52 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  π  ∈  ℝ ) | 
						
							| 54 | 51 53 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π )  ∈  ℝ ) | 
						
							| 55 | 47 54 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) )  ∈  ℝ ) | 
						
							| 56 | 33 40 | abs2dif2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  ( ( abs ‘ ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  +  ( abs ‘ ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 57 | 25 32 | absmuld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  =  ( ( abs ‘ 𝑦 )  ·  ( abs ‘ ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) ) | 
						
							| 58 | 30 | rpred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑛  +  1 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 59 | 34 | mullidd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 1  ·  𝑛 )  =  𝑛 ) | 
						
							| 60 | 26 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑛  ∈  ℝ ) | 
						
							| 61 | 60 | lep1d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑛  ≤  ( 𝑛  +  1 ) ) | 
						
							| 62 | 59 61 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 1  ·  𝑛 )  ≤  ( 𝑛  +  1 ) ) | 
						
							| 63 |  | 1red | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  1  ∈  ℝ ) | 
						
							| 64 | 60 63 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 65 | 63 64 29 | lemuldivd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 1  ·  𝑛 )  ≤  ( 𝑛  +  1 )  ↔  1  ≤  ( ( 𝑛  +  1 )  /  𝑛 ) ) ) | 
						
							| 66 | 62 65 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  1  ≤  ( ( 𝑛  +  1 )  /  𝑛 ) ) | 
						
							| 67 | 58 66 | logge0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  0  ≤  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) | 
						
							| 68 | 31 67 | absidd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  =  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ 𝑦 )  ·  ( abs ‘ ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  =  ( ( abs ‘ 𝑦 )  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 70 | 57 69 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  =  ( ( abs ‘ 𝑦 )  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 71 | 25 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 72 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 73 | 72 | breq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( abs ‘ 𝑥 )  ≤  𝑅  ↔  ( abs ‘ 𝑦 )  ≤  𝑅 ) ) | 
						
							| 74 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑦  →  ( abs ‘ ( 𝑥  +  𝑘 ) )  =  ( abs ‘ ( 𝑦  +  𝑘 ) ) ) | 
						
							| 75 | 74 | breq2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  ↔  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑘 ) ) ) ) | 
						
							| 76 | 75 | ralbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  ↔  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑘 ) ) ) ) | 
						
							| 77 | 73 76 | anbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) )  ↔  ( ( abs ‘ 𝑦 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑘 ) ) ) ) ) | 
						
							| 78 | 77 2 | elrab2 | ⊢ ( 𝑦  ∈  𝑈  ↔  ( 𝑦  ∈  ℂ  ∧  ( ( abs ‘ 𝑦 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑘 ) ) ) ) ) | 
						
							| 79 | 78 | simprbi | ⊢ ( 𝑦  ∈  𝑈  →  ( ( abs ‘ 𝑦 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑘 ) ) ) ) | 
						
							| 80 | 79 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ 𝑦 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑘 ) ) ) ) | 
						
							| 81 | 80 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ 𝑦 )  ≤  𝑅 ) | 
						
							| 82 | 71 46 31 67 81 | lemul1ad | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ 𝑦 )  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  ≤  ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 83 | 70 82 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  ≤  ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 84 | 38 39 | absrpcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 85 | 84 | relogcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 86 | 85 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 87 | 86 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 88 | 87 53 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  +  π )  ∈  ℝ ) | 
						
							| 89 |  | abslogle | ⊢ ( ( ( ( 𝑦  /  𝑛 )  +  1 )  ∈  ℂ  ∧  ( ( 𝑦  /  𝑛 )  +  1 )  ≠  0 )  →  ( abs ‘ ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ≤  ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  +  π ) ) | 
						
							| 90 | 38 39 89 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ≤  ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  +  π ) ) | 
						
							| 91 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 92 |  | relogdiv | ⊢ ( ( 1  ∈  ℝ+  ∧  ( ( 𝑅  +  1 )  ·  𝑛 )  ∈  ℝ+ )  →  ( log ‘ ( 1  /  ( ( 𝑅  +  1 )  ·  𝑛 ) ) )  =  ( ( log ‘ 1 )  −  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) ) | 
						
							| 93 | 91 50 92 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( log ‘ ( 1  /  ( ( 𝑅  +  1 )  ·  𝑛 ) ) )  =  ( ( log ‘ 1 )  −  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) ) | 
						
							| 94 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 95 | 94 | oveq1i | ⊢ ( ( log ‘ 1 )  −  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) )  =  ( 0  −  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) | 
						
							| 96 |  | df-neg | ⊢ - ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  =  ( 0  −  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) | 
						
							| 97 | 95 96 | eqtr4i | ⊢ ( ( log ‘ 1 )  −  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) )  =  - ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) | 
						
							| 98 | 93 97 | eqtr2di | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  - ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  =  ( log ‘ ( 1  /  ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) ) | 
						
							| 99 | 48 | nnrecred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 1  /  ( 𝑅  +  1 ) )  ∈  ℝ ) | 
						
							| 100 | 25 34 | addcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑦  +  𝑛 )  ∈  ℂ ) | 
						
							| 101 | 100 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( 𝑦  +  𝑛 ) )  ∈  ℝ ) | 
						
							| 102 | 7 | nnrecred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 1  /  𝑅 )  ∈  ℝ ) | 
						
							| 103 | 7 | nnrpd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑅  ∈  ℝ+ ) | 
						
							| 104 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 105 | 104 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  0  ≤  1 ) | 
						
							| 106 | 46 | lep1d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑅  ≤  ( 𝑅  +  1 ) ) | 
						
							| 107 | 103 49 63 105 106 | lediv2ad | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 1  /  ( 𝑅  +  1 ) )  ≤  ( 1  /  𝑅 ) ) | 
						
							| 108 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑦  +  𝑘 )  =  ( 𝑦  +  𝑛 ) ) | 
						
							| 109 | 108 | fveq2d | ⊢ ( 𝑘  =  𝑛  →  ( abs ‘ ( 𝑦  +  𝑘 ) )  =  ( abs ‘ ( 𝑦  +  𝑛 ) ) ) | 
						
							| 110 | 109 | breq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑘 ) )  ↔  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑛 ) ) ) ) | 
						
							| 111 | 80 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑘 ) ) ) | 
						
							| 112 | 26 | nnnn0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 113 | 110 111 112 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑦  +  𝑛 ) ) ) | 
						
							| 114 | 99 102 101 107 113 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 1  /  ( 𝑅  +  1 ) )  ≤  ( abs ‘ ( 𝑦  +  𝑛 ) ) ) | 
						
							| 115 | 99 101 29 114 | lediv1dd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 1  /  ( 𝑅  +  1 ) )  /  𝑛 )  ≤  ( ( abs ‘ ( 𝑦  +  𝑛 ) )  /  𝑛 ) ) | 
						
							| 116 | 48 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑅  +  1 )  ∈  ℂ ) | 
						
							| 117 | 48 | nnne0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑅  +  1 )  ≠  0 ) | 
						
							| 118 | 116 34 117 35 | recdiv2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 1  /  ( 𝑅  +  1 ) )  /  𝑛 )  =  ( 1  /  ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) | 
						
							| 119 | 25 34 34 35 | divdird | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑦  +  𝑛 )  /  𝑛 )  =  ( ( 𝑦  /  𝑛 )  +  ( 𝑛  /  𝑛 ) ) ) | 
						
							| 120 | 34 35 | dividd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑛  /  𝑛 )  =  1 ) | 
						
							| 121 | 120 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑦  /  𝑛 )  +  ( 𝑛  /  𝑛 ) )  =  ( ( 𝑦  /  𝑛 )  +  1 ) ) | 
						
							| 122 | 119 121 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑦  /  𝑛 )  +  1 )  =  ( ( 𝑦  +  𝑛 )  /  𝑛 ) ) | 
						
							| 123 | 122 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  =  ( abs ‘ ( ( 𝑦  +  𝑛 )  /  𝑛 ) ) ) | 
						
							| 124 | 100 34 35 | absdivd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  +  𝑛 )  /  𝑛 ) )  =  ( ( abs ‘ ( 𝑦  +  𝑛 ) )  /  ( abs ‘ 𝑛 ) ) ) | 
						
							| 125 | 29 | rpge0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  0  ≤  𝑛 ) | 
						
							| 126 | 60 125 | absidd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ 𝑛 )  =  𝑛 ) | 
						
							| 127 | 126 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( 𝑦  +  𝑛 ) )  /  ( abs ‘ 𝑛 ) )  =  ( ( abs ‘ ( 𝑦  +  𝑛 ) )  /  𝑛 ) ) | 
						
							| 128 | 123 124 127 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( 𝑦  +  𝑛 ) )  /  𝑛 )  =  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) | 
						
							| 129 | 115 118 128 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 1  /  ( ( 𝑅  +  1 )  ·  𝑛 ) )  ≤  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) | 
						
							| 130 | 50 | rpreccld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 1  /  ( ( 𝑅  +  1 )  ·  𝑛 ) )  ∈  ℝ+ ) | 
						
							| 131 | 130 84 | logled | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 1  /  ( ( 𝑅  +  1 )  ·  𝑛 ) )  ≤  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  ↔  ( log ‘ ( 1  /  ( ( 𝑅  +  1 )  ·  𝑛 ) ) )  ≤  ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 132 | 129 131 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( log ‘ ( 1  /  ( ( 𝑅  +  1 )  ·  𝑛 ) ) )  ≤  ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 133 | 98 132 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  - ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  ≤  ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 134 | 38 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  ∈  ℝ ) | 
						
							| 135 | 46 63 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑅  +  1 )  ∈  ℝ ) | 
						
							| 136 | 50 | rpred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑅  +  1 )  ·  𝑛 )  ∈  ℝ ) | 
						
							| 137 | 36 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( 𝑦  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 138 | 137 63 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( 𝑦  /  𝑛 ) )  +  1 )  ∈  ℝ ) | 
						
							| 139 | 36 37 | abstrid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  ≤  ( ( abs ‘ ( 𝑦  /  𝑛 ) )  +  ( abs ‘ 1 ) ) ) | 
						
							| 140 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 141 | 140 | oveq2i | ⊢ ( ( abs ‘ ( 𝑦  /  𝑛 ) )  +  ( abs ‘ 1 ) )  =  ( ( abs ‘ ( 𝑦  /  𝑛 ) )  +  1 ) | 
						
							| 142 | 139 141 | breqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  ≤  ( ( abs ‘ ( 𝑦  /  𝑛 ) )  +  1 ) ) | 
						
							| 143 | 91 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  1  ∈  ℝ+ ) | 
						
							| 144 | 25 | absge0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  0  ≤  ( abs ‘ 𝑦 ) ) | 
						
							| 145 | 26 | nnge1d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  1  ≤  𝑛 ) | 
						
							| 146 | 71 46 143 60 144 81 145 | lediv12ad | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ 𝑦 )  /  𝑛 )  ≤  ( 𝑅  /  1 ) ) | 
						
							| 147 | 25 34 35 | absdivd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( 𝑦  /  𝑛 ) )  =  ( ( abs ‘ 𝑦 )  /  ( abs ‘ 𝑛 ) ) ) | 
						
							| 148 | 126 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ 𝑦 )  /  ( abs ‘ 𝑛 ) )  =  ( ( abs ‘ 𝑦 )  /  𝑛 ) ) | 
						
							| 149 | 147 148 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ 𝑦 )  /  𝑛 )  =  ( abs ‘ ( 𝑦  /  𝑛 ) ) ) | 
						
							| 150 | 7 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  𝑅  ∈  ℂ ) | 
						
							| 151 | 150 | div1d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑅  /  1 )  =  𝑅 ) | 
						
							| 152 | 146 149 151 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( 𝑦  /  𝑛 ) )  ≤  𝑅 ) | 
						
							| 153 | 137 46 63 152 | leadd1dd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( 𝑦  /  𝑛 ) )  +  1 )  ≤  ( 𝑅  +  1 ) ) | 
						
							| 154 | 134 138 135 142 153 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  ≤  ( 𝑅  +  1 ) ) | 
						
							| 155 | 49 | rpge0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  0  ≤  ( 𝑅  +  1 ) ) | 
						
							| 156 | 135 60 155 145 | lemulge11d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑅  +  1 )  ≤  ( ( 𝑅  +  1 )  ·  𝑛 ) ) | 
						
							| 157 | 134 135 136 154 156 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  ≤  ( ( 𝑅  +  1 )  ·  𝑛 ) ) | 
						
							| 158 | 84 50 | logled | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) )  ≤  ( ( 𝑅  +  1 )  ·  𝑛 )  ↔  ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ≤  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) ) | 
						
							| 159 | 157 158 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ≤  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) | 
						
							| 160 | 85 51 | absled | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  ↔  ( - ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  ≤  ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ∧  ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ≤  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) ) ) | 
						
							| 161 | 133 159 160 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) | 
						
							| 162 | 87 51 53 161 | leadd1dd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  +  π )  ≤  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) | 
						
							| 163 | 44 88 54 90 162 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ≤  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) | 
						
							| 164 | 43 44 47 54 83 163 | le2addd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( abs ‘ ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  +  ( abs ‘ ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) | 
						
							| 165 | 42 45 55 56 164 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) | 
						
							| 166 | 165 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  ∧  ¬  ( 2  ·  𝑅 )  ≤  𝑛 )  →  ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) | 
						
							| 167 | 5 6 21 166 | ifbothda | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) )  ≤  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) | 
						
							| 168 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  +  1 )  =  ( 𝑛  +  1 ) ) | 
						
							| 169 |  | id | ⊢ ( 𝑚  =  𝑛  →  𝑚  =  𝑛 ) | 
						
							| 170 | 168 169 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  +  1 )  /  𝑚 )  =  ( ( 𝑛  +  1 )  /  𝑛 ) ) | 
						
							| 171 | 170 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  =  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) | 
						
							| 172 | 171 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 173 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑧  /  𝑚 )  =  ( 𝑧  /  𝑛 ) ) | 
						
							| 174 | 173 | fvoveq1d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) )  =  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) | 
						
							| 175 | 172 174 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) )  =  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 176 | 175 | mpteq2dv | ⊢ ( 𝑚  =  𝑛  →  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) )  =  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 177 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 178 | 2 177 | rabex2 | ⊢ 𝑈  ∈  V | 
						
							| 179 | 178 | mptex | ⊢ ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) )  ∈  V | 
						
							| 180 | 176 3 179 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 181 | 180 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 182 | 181 | fveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) ‘ 𝑦 ) ) | 
						
							| 183 |  | oveq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  =  ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 184 |  | oveq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  /  𝑛 )  =  ( 𝑦  /  𝑛 ) ) | 
						
							| 185 | 184 | fvoveq1d | ⊢ ( 𝑧  =  𝑦  →  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) )  =  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) | 
						
							| 186 | 183 185 | oveq12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  =  ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 187 |  | eqid | ⊢ ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) )  =  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 188 |  | ovex | ⊢ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) )  ∈  V | 
						
							| 189 | 186 187 188 | fvmpt | ⊢ ( 𝑦  ∈  𝑈  →  ( ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) ‘ 𝑦 )  =  ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 190 | 189 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) ‘ 𝑦 )  =  ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 191 | 182 190 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 192 | 191 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( abs ‘ ( ( 𝑦  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑦  /  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 193 |  | breq2 | ⊢ ( 𝑚  =  𝑛  →  ( ( 2  ·  𝑅 )  ≤  𝑚  ↔  ( 2  ·  𝑅 )  ≤  𝑛 ) ) | 
						
							| 194 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚 ↑ 2 )  =  ( 𝑛 ↑ 2 ) ) | 
						
							| 195 | 194 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) )  =  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) | 
						
							| 196 | 195 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) )  =  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 197 | 171 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 198 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑅  +  1 )  ·  𝑚 )  =  ( ( 𝑅  +  1 )  ·  𝑛 ) ) | 
						
							| 199 | 198 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  =  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) ) ) | 
						
							| 200 | 199 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π )  =  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) | 
						
							| 201 | 197 200 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) )  =  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) | 
						
							| 202 | 193 196 201 | ifbieq12d | ⊢ ( 𝑚  =  𝑛  →  if ( ( 2  ·  𝑅 )  ≤  𝑚 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) ) )  =  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) | 
						
							| 203 |  | ovex | ⊢ ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) )  ∈  V | 
						
							| 204 |  | ovex | ⊢ ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) )  ∈  V | 
						
							| 205 | 203 204 | ifex | ⊢ if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) )  ∈  V | 
						
							| 206 | 202 4 205 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑇 ‘ 𝑛 )  =  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) | 
						
							| 207 | 206 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑇 ‘ 𝑛 )  =  if ( ( 2  ·  𝑅 )  ≤  𝑛 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑛 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑛 ) )  +  π ) ) ) ) | 
						
							| 208 | 167 192 207 | 3brtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) )  ≤  ( 𝑇 ‘ 𝑛 ) ) |