Step |
Hyp |
Ref |
Expression |
1 |
|
lgamgulm.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
2 |
|
lgamgulm.u |
⊢ 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
3 |
|
lgamgulm.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) |
4 |
|
lgamgulm.t |
⊢ 𝑇 = ( 𝑚 ∈ ℕ ↦ if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) ) |
5 |
|
breq2 |
⊢ ( ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) → ( ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ↔ ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) ) |
6 |
|
breq2 |
⊢ ( ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) → ( ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ↔ ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ ℕ ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → 𝑅 ∈ ℕ ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( abs ‘ 𝑥 ) = ( abs ‘ 𝑡 ) ) |
10 |
9
|
breq1d |
⊢ ( 𝑥 = 𝑡 → ( ( abs ‘ 𝑥 ) ≤ 𝑅 ↔ ( abs ‘ 𝑡 ) ≤ 𝑅 ) ) |
11 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑡 → ( abs ‘ ( 𝑥 + 𝑘 ) ) = ( abs ‘ ( 𝑡 + 𝑘 ) ) ) |
12 |
11
|
breq2d |
⊢ ( 𝑥 = 𝑡 → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑥 = 𝑡 → ( ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) ) |
14 |
10 13
|
anbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ↔ ( ( abs ‘ 𝑡 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) ) ) |
15 |
14
|
cbvrabv |
⊢ { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } = { 𝑡 ∈ ℂ ∣ ( ( abs ‘ 𝑡 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) } |
16 |
2 15
|
eqtri |
⊢ 𝑈 = { 𝑡 ∈ ℂ ∣ ( ( abs ‘ 𝑡 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑡 + 𝑘 ) ) ) } |
17 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → 𝑛 ∈ ℕ ) |
18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → 𝑦 ∈ 𝑈 ) |
20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → ( 2 · 𝑅 ) ≤ 𝑛 ) |
21 |
8 16 17 19 20
|
lgamgulmlem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 2 · 𝑅 ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
22 |
1 2
|
lgamgulmlem1 |
⊢ ( 𝜑 → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
24 |
23 18
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
25 |
24
|
eldifad |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ ℂ ) |
26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℕ ) |
27 |
26
|
peano2nnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
28 |
27
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑛 + 1 ) ∈ ℝ+ ) |
29 |
26
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℝ+ ) |
30 |
28 29
|
rpdivcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑛 + 1 ) / 𝑛 ) ∈ ℝ+ ) |
31 |
30
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℝ ) |
32 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℂ ) |
33 |
25 32
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ∈ ℂ ) |
34 |
26
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℂ ) |
35 |
26
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ≠ 0 ) |
36 |
25 34 35
|
divcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 / 𝑛 ) ∈ ℂ ) |
37 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ∈ ℂ ) |
38 |
36 37
|
addcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 / 𝑛 ) + 1 ) ∈ ℂ ) |
39 |
24 26
|
dmgmdivn0 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 / 𝑛 ) + 1 ) ≠ 0 ) |
40 |
38 39
|
logcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ∈ ℂ ) |
41 |
33 40
|
subcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
42 |
41
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ∈ ℝ ) |
43 |
33
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) ∈ ℝ ) |
44 |
40
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ ℝ ) |
45 |
43 44
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) + ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ∈ ℝ ) |
46 |
7
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ ℝ ) |
47 |
46 31
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ∈ ℝ ) |
48 |
7
|
peano2nnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ∈ ℕ ) |
49 |
48
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ∈ ℝ+ ) |
50 |
49 29
|
rpmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑅 + 1 ) · 𝑛 ) ∈ ℝ+ ) |
51 |
50
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ∈ ℝ ) |
52 |
|
pire |
⊢ π ∈ ℝ |
53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → π ∈ ℝ ) |
54 |
51 53
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ∈ ℝ ) |
55 |
47 54
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ∈ ℝ ) |
56 |
33 40
|
abs2dif2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) + ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ) |
57 |
25 32
|
absmuld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) = ( ( abs ‘ 𝑦 ) · ( abs ‘ ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) ) |
58 |
30
|
rpred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑛 + 1 ) / 𝑛 ) ∈ ℝ ) |
59 |
34
|
mulid2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 · 𝑛 ) = 𝑛 ) |
60 |
26
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℝ ) |
61 |
60
|
lep1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ≤ ( 𝑛 + 1 ) ) |
62 |
59 61
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 · 𝑛 ) ≤ ( 𝑛 + 1 ) ) |
63 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ∈ ℝ ) |
64 |
60 63
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
65 |
63 64 29
|
lemuldivd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 1 · 𝑛 ) ≤ ( 𝑛 + 1 ) ↔ 1 ≤ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
66 |
62 65
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ≤ ( ( 𝑛 + 1 ) / 𝑛 ) ) |
67 |
58 66
|
logge0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
68 |
31 67
|
absidd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) = ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
69 |
68
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) · ( abs ‘ ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) = ( ( abs ‘ 𝑦 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
70 |
57 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) = ( ( abs ‘ 𝑦 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
71 |
25
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
72 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ 𝑥 ) = ( abs ‘ 𝑦 ) ) |
73 |
72
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ 𝑥 ) ≤ 𝑅 ↔ ( abs ‘ 𝑦 ) ≤ 𝑅 ) ) |
74 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( 𝑥 + 𝑘 ) ) = ( abs ‘ ( 𝑦 + 𝑘 ) ) ) |
75 |
74
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) |
76 |
75
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) |
77 |
73 76
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ↔ ( ( abs ‘ 𝑦 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) ) |
78 |
77 2
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑈 ↔ ( 𝑦 ∈ ℂ ∧ ( ( abs ‘ 𝑦 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) ) |
79 |
78
|
simprbi |
⊢ ( 𝑦 ∈ 𝑈 → ( ( abs ‘ 𝑦 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) |
80 |
79
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) ) |
81 |
80
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ 𝑦 ) ≤ 𝑅 ) |
82 |
71 46 31 67 81
|
lemul1ad |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ≤ ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
83 |
70 82
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) ≤ ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
84 |
38 39
|
absrpcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ∈ ℝ+ ) |
85 |
84
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ ℝ ) |
86 |
85
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
87 |
86
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ∈ ℝ ) |
88 |
87 53
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) + π ) ∈ ℝ ) |
89 |
|
abslogle |
⊢ ( ( ( ( 𝑦 / 𝑛 ) + 1 ) ∈ ℂ ∧ ( ( 𝑦 / 𝑛 ) + 1 ) ≠ 0 ) → ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) + π ) ) |
90 |
38 39 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) + π ) ) |
91 |
|
1rp |
⊢ 1 ∈ ℝ+ |
92 |
|
relogdiv |
⊢ ( ( 1 ∈ ℝ+ ∧ ( ( 𝑅 + 1 ) · 𝑛 ) ∈ ℝ+ ) → ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) = ( ( log ‘ 1 ) − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) |
93 |
91 50 92
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) = ( ( log ‘ 1 ) − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) |
94 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
95 |
94
|
oveq1i |
⊢ ( ( log ‘ 1 ) − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) = ( 0 − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
96 |
|
df-neg |
⊢ - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) = ( 0 − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
97 |
95 96
|
eqtr4i |
⊢ ( ( log ‘ 1 ) − ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) = - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) |
98 |
93 97
|
eqtr2di |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) = ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) |
99 |
48
|
nnrecred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( 𝑅 + 1 ) ) ∈ ℝ ) |
100 |
25 34
|
addcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 + 𝑛 ) ∈ ℂ ) |
101 |
100
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 + 𝑛 ) ) ∈ ℝ ) |
102 |
7
|
nnrecred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / 𝑅 ) ∈ ℝ ) |
103 |
7
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ ℝ+ ) |
104 |
|
0le1 |
⊢ 0 ≤ 1 |
105 |
104
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ 1 ) |
106 |
46
|
lep1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ≤ ( 𝑅 + 1 ) ) |
107 |
103 49 63 105 106
|
lediv2ad |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( 𝑅 + 1 ) ) ≤ ( 1 / 𝑅 ) ) |
108 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑦 + 𝑘 ) = ( 𝑦 + 𝑛 ) ) |
109 |
108
|
fveq2d |
⊢ ( 𝑘 = 𝑛 → ( abs ‘ ( 𝑦 + 𝑘 ) ) = ( abs ‘ ( 𝑦 + 𝑛 ) ) ) |
110 |
109
|
breq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ↔ ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑛 ) ) ) ) |
111 |
80
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑘 ) ) ) |
112 |
26
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑛 ∈ ℕ0 ) |
113 |
110 111 112
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑦 + 𝑛 ) ) ) |
114 |
99 102 101 107 113
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( 𝑅 + 1 ) ) ≤ ( abs ‘ ( 𝑦 + 𝑛 ) ) ) |
115 |
99 101 29 114
|
lediv1dd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 1 / ( 𝑅 + 1 ) ) / 𝑛 ) ≤ ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / 𝑛 ) ) |
116 |
48
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ∈ ℂ ) |
117 |
48
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ≠ 0 ) |
118 |
116 34 117 35
|
recdiv2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 1 / ( 𝑅 + 1 ) ) / 𝑛 ) = ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
119 |
25 34 34 35
|
divdird |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 + 𝑛 ) / 𝑛 ) = ( ( 𝑦 / 𝑛 ) + ( 𝑛 / 𝑛 ) ) ) |
120 |
34 35
|
dividd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑛 / 𝑛 ) = 1 ) |
121 |
120
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 / 𝑛 ) + ( 𝑛 / 𝑛 ) ) = ( ( 𝑦 / 𝑛 ) + 1 ) ) |
122 |
119 121
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 / 𝑛 ) + 1 ) = ( ( 𝑦 + 𝑛 ) / 𝑛 ) ) |
123 |
122
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) = ( abs ‘ ( ( 𝑦 + 𝑛 ) / 𝑛 ) ) ) |
124 |
100 34 35
|
absdivd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 + 𝑛 ) / 𝑛 ) ) = ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / ( abs ‘ 𝑛 ) ) ) |
125 |
29
|
rpge0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ 𝑛 ) |
126 |
60 125
|
absidd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
127 |
126
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / 𝑛 ) ) |
128 |
123 124 127
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 + 𝑛 ) ) / 𝑛 ) = ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) |
129 |
115 118 128
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ≤ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) |
130 |
50
|
rpreccld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ∈ ℝ+ ) |
131 |
130 84
|
logled |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ≤ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ↔ ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ≤ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ) |
132 |
129 131
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( 1 / ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ≤ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
133 |
98 132
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ≤ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
134 |
38
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ∈ ℝ ) |
135 |
46 63
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ∈ ℝ ) |
136 |
50
|
rpred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑅 + 1 ) · 𝑛 ) ∈ ℝ ) |
137 |
36
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 / 𝑛 ) ) ∈ ℝ ) |
138 |
137 63
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + 1 ) ∈ ℝ ) |
139 |
36 37
|
abstrid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + ( abs ‘ 1 ) ) ) |
140 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
141 |
140
|
oveq2i |
⊢ ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + ( abs ‘ 1 ) ) = ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + 1 ) |
142 |
139 141
|
breqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + 1 ) ) |
143 |
91
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ∈ ℝ+ ) |
144 |
25
|
absge0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ ( abs ‘ 𝑦 ) ) |
145 |
26
|
nnge1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 1 ≤ 𝑛 ) |
146 |
71 46 143 60 144 81 145
|
lediv12ad |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) / 𝑛 ) ≤ ( 𝑅 / 1 ) ) |
147 |
25 34 35
|
absdivd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 / 𝑛 ) ) = ( ( abs ‘ 𝑦 ) / ( abs ‘ 𝑛 ) ) ) |
148 |
126
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ 𝑦 ) / 𝑛 ) ) |
149 |
147 148
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ 𝑦 ) / 𝑛 ) = ( abs ‘ ( 𝑦 / 𝑛 ) ) ) |
150 |
7
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ ℂ ) |
151 |
150
|
div1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 / 1 ) = 𝑅 ) |
152 |
146 149 151
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( 𝑦 / 𝑛 ) ) ≤ 𝑅 ) |
153 |
137 46 63 152
|
leadd1dd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 / 𝑛 ) ) + 1 ) ≤ ( 𝑅 + 1 ) ) |
154 |
134 138 135 142 153
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( 𝑅 + 1 ) ) |
155 |
49
|
rpge0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → 0 ≤ ( 𝑅 + 1 ) ) |
156 |
135 60 155 145
|
lemulge11d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑅 + 1 ) ≤ ( ( 𝑅 + 1 ) · 𝑛 ) ) |
157 |
134 135 136 154 156
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( ( 𝑅 + 1 ) · 𝑛 ) ) |
158 |
84 50
|
logled |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ≤ ( ( 𝑅 + 1 ) · 𝑛 ) ↔ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) |
159 |
157 158
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
160 |
85 51
|
absled |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ↔ ( - ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ≤ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∧ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) ) ) |
161 |
133 159 160
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
162 |
87 51 53 161
|
leadd1dd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( log ‘ ( abs ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) + π ) ≤ ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) |
163 |
44 88 54 90 162
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ≤ ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) |
164 |
43 44 47 54 83 163
|
le2addd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( abs ‘ ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) + ( abs ‘ ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) |
165 |
42 45 55 56 164
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) |
166 |
165
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) ∧ ¬ ( 2 · 𝑅 ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) |
167 |
5 6 21 166
|
ifbothda |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ≤ if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
168 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) ) |
169 |
|
id |
⊢ ( 𝑚 = 𝑛 → 𝑚 = 𝑛 ) |
170 |
168 169
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑛 + 1 ) / 𝑛 ) ) |
171 |
170
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
172 |
171
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
173 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 / 𝑚 ) = ( 𝑧 / 𝑛 ) ) |
174 |
173
|
fvoveq1d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) = ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) |
175 |
172 174
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) = ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) |
176 |
175
|
mpteq2dv |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) = ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ) |
177 |
|
cnex |
⊢ ℂ ∈ V |
178 |
2 177
|
rabex2 |
⊢ 𝑈 ∈ V |
179 |
178
|
mptex |
⊢ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ∈ V |
180 |
176 3 179
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( 𝐺 ‘ 𝑛 ) = ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ) |
181 |
180
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ) |
182 |
181
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ‘ 𝑦 ) ) |
183 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) = ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
184 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 / 𝑛 ) = ( 𝑦 / 𝑛 ) ) |
185 |
184
|
fvoveq1d |
⊢ ( 𝑧 = 𝑦 → ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) = ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) |
186 |
183 185
|
oveq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) = ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
187 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) = ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) |
188 |
|
ovex |
⊢ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ∈ V |
189 |
186 187 188
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑈 → ( ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
190 |
189
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
191 |
182 190
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) |
192 |
191
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝑦 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑦 / 𝑛 ) + 1 ) ) ) ) ) |
193 |
|
breq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 2 · 𝑅 ) ≤ 𝑚 ↔ ( 2 · 𝑅 ) ≤ 𝑛 ) ) |
194 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ↑ 2 ) = ( 𝑛 ↑ 2 ) ) |
195 |
194
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) = ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) |
196 |
195
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) = ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ) |
197 |
171
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
198 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑅 + 1 ) · 𝑚 ) = ( ( 𝑅 + 1 ) · 𝑛 ) ) |
199 |
198
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) = ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) ) |
200 |
199
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) = ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) |
201 |
197 200
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) = ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) |
202 |
193 196 201
|
ifbieq12d |
⊢ ( 𝑚 = 𝑛 → if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
203 |
|
ovex |
⊢ ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) ∈ V |
204 |
|
ovex |
⊢ ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ∈ V |
205 |
203 204
|
ifex |
⊢ if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ∈ V |
206 |
202 4 205
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( 𝑇 ‘ 𝑛 ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
207 |
206
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑇 ‘ 𝑛 ) = if ( ( 2 · 𝑅 ) ≤ 𝑛 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑛 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑛 ) ) + π ) ) ) ) |
208 |
167 192 207
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) ) ≤ ( 𝑇 ‘ 𝑛 ) ) |