Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
2 |
1
|
abscld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
3 |
|
absrpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
4 |
|
relogcl |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ+ → ( log ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
7 |
6
|
abscld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
8 |
1
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
10 |
9
|
abscld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
11 |
7 10
|
readdcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
12 |
|
pire |
⊢ π ∈ ℝ |
13 |
12
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → π ∈ ℝ ) |
14 |
7 13
|
readdcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + π ) ∈ ℝ ) |
15 |
1
|
recld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
17 |
|
ax-icn |
⊢ i ∈ ℂ |
18 |
17
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → i ∈ ℂ ) |
19 |
18 9
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
20 |
16 19
|
abstrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ≤ ( ( abs ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + ( abs ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
21 |
1
|
replimd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) = ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ 𝐴 ) ) = ( abs ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
23 |
|
relog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |
24 |
23
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ ( abs ‘ 𝐴 ) ) = ( ℜ ‘ ( log ‘ 𝐴 ) ) ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) = ( abs ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
26 |
18 9
|
absmuld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
27 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
28 |
27
|
oveq1i |
⊢ ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 1 · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
29 |
10
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
30 |
29
|
mulid2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
31 |
28 30
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
32 |
26 31
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( abs ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
33 |
25 32
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( abs ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + ( abs ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
34 |
20 22 33
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ 𝐴 ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
35 |
|
abslogimle |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
36 |
10 13 7 35
|
leadd2dd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + π ) ) |
37 |
2 11 14 34 36
|
letrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ 𝐴 ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + π ) ) |