| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamgulm.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 2 |
|
lgamgulm.u |
⊢ 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
| 3 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → 𝑥 ∈ ℂ ) |
| 4 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → 𝑅 ∈ ℕ ) |
| 5 |
4
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → 𝑅 ∈ ℝ ) |
| 6 |
4
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → 0 < 𝑅 ) |
| 7 |
5 6
|
recgt0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → 0 < ( 1 / 𝑅 ) ) |
| 8 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → 0 ∈ ℝ ) |
| 9 |
4
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ( 1 / 𝑅 ) ∈ ℝ ) |
| 10 |
8 9
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ( 0 < ( 1 / 𝑅 ) ↔ ¬ ( 1 / 𝑅 ) ≤ 0 ) ) |
| 11 |
7 10
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ¬ ( 1 / 𝑅 ) ≤ 0 ) |
| 12 |
|
oveq2 |
⊢ ( 𝑘 = - 𝑥 → ( 𝑥 + 𝑘 ) = ( 𝑥 + - 𝑥 ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑘 = - 𝑥 → ( abs ‘ ( 𝑥 + 𝑘 ) ) = ( abs ‘ ( 𝑥 + - 𝑥 ) ) ) |
| 14 |
13
|
breq2d |
⊢ ( 𝑘 = - 𝑥 → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + - 𝑥 ) ) ) ) |
| 15 |
14
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) → ( - 𝑥 ∈ ℕ0 → ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + - 𝑥 ) ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) → ( - 𝑥 ∈ ℕ0 → ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + - 𝑥 ) ) ) ) |
| 17 |
16
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ( - 𝑥 ∈ ℕ0 → ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + - 𝑥 ) ) ) ) |
| 18 |
3
|
negidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ( 𝑥 + - 𝑥 ) = 0 ) |
| 19 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ( abs ‘ ( 𝑥 + - 𝑥 ) ) = ( abs ‘ 0 ) ) |
| 20 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 21 |
19 20
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ( abs ‘ ( 𝑥 + - 𝑥 ) ) = 0 ) |
| 22 |
21
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + - 𝑥 ) ) ↔ ( 1 / 𝑅 ) ≤ 0 ) ) |
| 23 |
17 22
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ( - 𝑥 ∈ ℕ0 → ( 1 / 𝑅 ) ≤ 0 ) ) |
| 24 |
11 23
|
mtod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → ¬ - 𝑥 ∈ ℕ0 ) |
| 25 |
|
eldmgm |
⊢ ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝑥 ∈ ℂ ∧ ¬ - 𝑥 ∈ ℕ0 ) ) |
| 26 |
3 24 25
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ) → 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 27 |
26
|
rabssdv |
⊢ ( 𝜑 → { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 28 |
2 27
|
eqsstrid |
⊢ ( 𝜑 → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |