| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 2 |  | lgamgulm.u | ⊢ 𝑈  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 4 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  𝑅  ∈  ℕ ) | 
						
							| 5 | 4 | nnred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  𝑅  ∈  ℝ ) | 
						
							| 6 | 4 | nngt0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  0  <  𝑅 ) | 
						
							| 7 | 5 6 | recgt0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  0  <  ( 1  /  𝑅 ) ) | 
						
							| 8 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  0  ∈  ℝ ) | 
						
							| 9 | 4 | nnrecred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ( 1  /  𝑅 )  ∈  ℝ ) | 
						
							| 10 | 8 9 | ltnled | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ( 0  <  ( 1  /  𝑅 )  ↔  ¬  ( 1  /  𝑅 )  ≤  0 ) ) | 
						
							| 11 | 7 10 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ¬  ( 1  /  𝑅 )  ≤  0 ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑘  =  - 𝑥  →  ( 𝑥  +  𝑘 )  =  ( 𝑥  +  - 𝑥 ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑘  =  - 𝑥  →  ( abs ‘ ( 𝑥  +  𝑘 ) )  =  ( abs ‘ ( 𝑥  +  - 𝑥 ) ) ) | 
						
							| 14 | 13 | breq2d | ⊢ ( 𝑘  =  - 𝑥  →  ( ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  ↔  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  - 𝑥 ) ) ) ) | 
						
							| 15 | 14 | rspccv | ⊢ ( ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  →  ( - 𝑥  ∈  ℕ0  →  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  - 𝑥 ) ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) )  →  ( - 𝑥  ∈  ℕ0  →  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  - 𝑥 ) ) ) ) | 
						
							| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ( - 𝑥  ∈  ℕ0  →  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  - 𝑥 ) ) ) ) | 
						
							| 18 | 3 | negidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ( 𝑥  +  - 𝑥 )  =  0 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ( abs ‘ ( 𝑥  +  - 𝑥 ) )  =  ( abs ‘ 0 ) ) | 
						
							| 20 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ( abs ‘ ( 𝑥  +  - 𝑥 ) )  =  0 ) | 
						
							| 22 | 21 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ( ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  - 𝑥 ) )  ↔  ( 1  /  𝑅 )  ≤  0 ) ) | 
						
							| 23 | 17 22 | sylibd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ( - 𝑥  ∈  ℕ0  →  ( 1  /  𝑅 )  ≤  0 ) ) | 
						
							| 24 | 11 23 | mtod | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  ¬  - 𝑥  ∈  ℕ0 ) | 
						
							| 25 |  | eldmgm | ⊢ ( 𝑥  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ¬  - 𝑥  ∈  ℕ0 ) ) | 
						
							| 26 | 3 24 25 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) )  →  𝑥  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 27 | 26 | rabssdv | ⊢ ( 𝜑  →  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) }  ⊆  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 28 | 2 27 | eqsstrid | ⊢ ( 𝜑  →  𝑈  ⊆  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) |