| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 2 |  | lgamgulm.u | ⊢ 𝑈  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 3 |  | lgamgulm.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 4 |  | lgamgulm.t | ⊢ 𝑇  =  ( 𝑚  ∈  ℕ  ↦  if ( ( 2  ·  𝑅 )  ≤  𝑚 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) ) ) ) | 
						
							| 5 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 6 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 7 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 8 | 2 7 | rabex2 | ⊢ 𝑈  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  𝑈  ∈  V ) | 
						
							| 10 | 1 2 | lgamgulmlem1 | ⊢ ( 𝜑  →  𝑈  ⊆  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  𝑈  ⊆  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  𝑈 ) | 
						
							| 13 | 11 12 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 14 | 13 | eldifad | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  ℂ ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  𝑚  ∈  ℕ ) | 
						
							| 16 | 15 | peano2nnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 17 | 16 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( 𝑚  +  1 )  ∈  ℝ+ ) | 
						
							| 18 | 15 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  𝑚  ∈  ℝ+ ) | 
						
							| 19 | 17 18 | rpdivcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( ( 𝑚  +  1 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 20 | 19 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 21 | 20 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 22 | 14 21 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 23 | 15 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  𝑚  ∈  ℂ ) | 
						
							| 24 | 15 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  𝑚  ≠  0 ) | 
						
							| 25 | 14 23 24 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( 𝑧  /  𝑚 )  ∈  ℂ ) | 
						
							| 26 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  1  ∈  ℂ ) | 
						
							| 27 | 25 26 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( ( 𝑧  /  𝑚 )  +  1 )  ∈  ℂ ) | 
						
							| 28 | 13 15 | dmgmdivn0 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( ( 𝑧  /  𝑚 )  +  1 )  ≠  0 ) | 
						
							| 29 | 27 28 | logcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) )  ∈  ℂ ) | 
						
							| 30 | 22 29 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  𝑈 )  →  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 31 | 30 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) : 𝑈 ⟶ ℂ ) | 
						
							| 32 | 7 8 | elmap | ⊢ ( ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) )  ∈  ( ℂ  ↑m  𝑈 )  ↔  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) : 𝑈 ⟶ ℂ ) | 
						
							| 33 | 31 32 | sylibr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) )  ∈  ( ℂ  ↑m  𝑈 ) ) | 
						
							| 34 | 33 3 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ ( ℂ  ↑m  𝑈 ) ) | 
						
							| 35 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 36 | 35 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  if ( ( 2  ·  𝑅 )  ≤  𝑚 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) ) ) )  ∈  V | 
						
							| 37 | 4 36 | eqeltri | ⊢ 𝑇  ∈  V | 
						
							| 38 | 37 | a1i | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 39 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑅  ∈  ℕ ) | 
						
							| 40 | 39 | nnred | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑅  ∈  ℝ ) | 
						
							| 41 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  2  ∈  ℝ ) | 
						
							| 43 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 44 | 40 43 | readdcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑅  +  1 )  ∈  ℝ ) | 
						
							| 45 | 42 44 | remulcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 2  ·  ( 𝑅  +  1 ) )  ∈  ℝ ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℕ ) | 
						
							| 47 | 46 | nnsqcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚 ↑ 2 )  ∈  ℕ ) | 
						
							| 48 | 45 47 | nndivred | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 49 | 40 48 | remulcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) )  ∈  ℝ ) | 
						
							| 50 | 46 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 51 | 50 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℝ+ ) | 
						
							| 52 | 46 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ+ ) | 
						
							| 53 | 51 52 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 54 | 53 | relogcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 55 | 40 54 | remulcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 56 | 39 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑅  +  1 )  ∈  ℕ ) | 
						
							| 57 | 56 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑅  +  1 )  ∈  ℝ+ ) | 
						
							| 58 | 57 52 | rpmulcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑅  +  1 )  ·  𝑚 )  ∈  ℝ+ ) | 
						
							| 59 | 58 | relogcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  ∈  ℝ ) | 
						
							| 60 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 61 | 60 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  π  ∈  ℝ ) | 
						
							| 62 | 59 61 | readdcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π )  ∈  ℝ ) | 
						
							| 63 | 55 62 | readdcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) )  ∈  ℝ ) | 
						
							| 64 | 49 63 | ifcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  if ( ( 2  ·  𝑅 )  ≤  𝑚 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) ) )  ∈  ℝ ) | 
						
							| 65 | 64 4 | fmptd | ⊢ ( 𝜑  →  𝑇 : ℕ ⟶ ℝ ) | 
						
							| 66 | 65 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑇 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 67 | 1 2 3 4 | lgamgulmlem5 | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) )  ≤  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 68 | 1 2 3 4 | lgamgulmlem4 | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝑇 )  ∈  dom   ⇝  ) | 
						
							| 69 | 5 6 9 34 38 66 67 68 | mtest | ⊢ ( 𝜑  →  seq 1 (  ∘f   +  ,  𝐺 )  ∈  dom  ( ⇝𝑢 ‘ 𝑈 ) ) | 
						
							| 70 |  | 1zzd | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  1  ∈  ℤ ) | 
						
							| 71 | 8 | a1i | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  𝑈  ∈  V ) | 
						
							| 72 | 34 | adantr | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  𝐺 : ℕ ⟶ ( ℂ  ↑m  𝑈 ) ) | 
						
							| 73 | 37 | a1i | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  𝑇  ∈  V ) | 
						
							| 74 | 66 | adantlr | ⊢ ( ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑇 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 75 | 67 | adantlr | ⊢ ( ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑈 ) )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) )  ≤  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 76 | 68 | adantr | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  seq 1 (  +  ,  𝑇 )  ∈  dom   ⇝  ) | 
						
							| 77 |  | simpr | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) ) | 
						
							| 78 | 5 70 71 72 73 74 75 76 77 | mtestbdd | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  𝑈 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑦 ) )  ≤  𝑟 ) | 
						
							| 79 |  | nfcv | ⊢ Ⅎ 𝑧 abs | 
						
							| 80 |  | nffvmpt1 | ⊢ Ⅎ 𝑧 ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑦 ) | 
						
							| 81 | 79 80 | nffv | ⊢ Ⅎ 𝑧 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑦 ) ) | 
						
							| 82 |  | nfcv | ⊢ Ⅎ 𝑧  ≤ | 
						
							| 83 |  | nfcv | ⊢ Ⅎ 𝑧 𝑟 | 
						
							| 84 | 81 82 83 | nfbr | ⊢ Ⅎ 𝑧 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑦 ) )  ≤  𝑟 | 
						
							| 85 |  | nfv | ⊢ Ⅎ 𝑦 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) )  ≤  𝑟 | 
						
							| 86 |  | 2fveq3 | ⊢ ( 𝑦  =  𝑧  →  ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑦 ) )  =  ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) ) ) | 
						
							| 87 | 86 | breq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑦 ) )  ≤  𝑟  ↔  ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) )  ≤  𝑟 ) ) | 
						
							| 88 | 84 85 87 | cbvralw | ⊢ ( ∀ 𝑦  ∈  𝑈 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑦 ) )  ≤  𝑟  ↔  ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) )  ≤  𝑟 ) | 
						
							| 89 |  | ulmcl | ⊢ ( seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 )  →  ( 𝑧  ∈  𝑈  ↦  𝑂 ) : 𝑈 ⟶ ℂ ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  ( 𝑧  ∈  𝑈  ↦  𝑂 ) : 𝑈 ⟶ ℂ ) | 
						
							| 91 |  | eqid | ⊢ ( 𝑧  ∈  𝑈  ↦  𝑂 )  =  ( 𝑧  ∈  𝑈  ↦  𝑂 ) | 
						
							| 92 | 91 | fmpt | ⊢ ( ∀ 𝑧  ∈  𝑈 𝑂  ∈  ℂ  ↔  ( 𝑧  ∈  𝑈  ↦  𝑂 ) : 𝑈 ⟶ ℂ ) | 
						
							| 93 | 90 92 | sylibr | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  ∀ 𝑧  ∈  𝑈 𝑂  ∈  ℂ ) | 
						
							| 94 | 91 | fvmpt2 | ⊢ ( ( 𝑧  ∈  𝑈  ∧  𝑂  ∈  ℂ )  →  ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 )  =  𝑂 ) | 
						
							| 95 | 94 | fveq2d | ⊢ ( ( 𝑧  ∈  𝑈  ∧  𝑂  ∈  ℂ )  →  ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) )  =  ( abs ‘ 𝑂 ) ) | 
						
							| 96 | 95 | breq1d | ⊢ ( ( 𝑧  ∈  𝑈  ∧  𝑂  ∈  ℂ )  →  ( ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) )  ≤  𝑟  ↔  ( abs ‘ 𝑂 )  ≤  𝑟 ) ) | 
						
							| 97 | 96 | ralimiaa | ⊢ ( ∀ 𝑧  ∈  𝑈 𝑂  ∈  ℂ  →  ∀ 𝑧  ∈  𝑈 ( ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) )  ≤  𝑟  ↔  ( abs ‘ 𝑂 )  ≤  𝑟 ) ) | 
						
							| 98 |  | ralbi | ⊢ ( ∀ 𝑧  ∈  𝑈 ( ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) )  ≤  𝑟  ↔  ( abs ‘ 𝑂 )  ≤  𝑟 )  →  ( ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) )  ≤  𝑟  ↔  ∀ 𝑧  ∈  𝑈 ( abs ‘ 𝑂 )  ≤  𝑟 ) ) | 
						
							| 99 | 93 97 98 | 3syl | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  ( ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑧 ) )  ≤  𝑟  ↔  ∀ 𝑧  ∈  𝑈 ( abs ‘ 𝑂 )  ≤  𝑟 ) ) | 
						
							| 100 | 88 99 | bitrid | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  ( ∀ 𝑦  ∈  𝑈 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑦 ) )  ≤  𝑟  ↔  ∀ 𝑧  ∈  𝑈 ( abs ‘ 𝑂 )  ≤  𝑟 ) ) | 
						
							| 101 | 100 | rexbidv | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  ( ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  𝑈 ( abs ‘ ( ( 𝑧  ∈  𝑈  ↦  𝑂 ) ‘ 𝑦 ) )  ≤  𝑟  ↔  ∃ 𝑟  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ 𝑂 )  ≤  𝑟 ) ) | 
						
							| 102 | 78 101 | mpbid | ⊢ ( ( 𝜑  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 ) )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ 𝑂 )  ≤  𝑟 ) | 
						
							| 103 | 102 | ex | ⊢ ( 𝜑  →  ( seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ 𝑂 )  ≤  𝑟 ) ) | 
						
							| 104 | 69 103 | jca | ⊢ ( 𝜑  →  ( seq 1 (  ∘f   +  ,  𝐺 )  ∈  dom  ( ⇝𝑢 ‘ 𝑈 )  ∧  ( seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  𝑂 )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ 𝑂 )  ≤  𝑟 ) ) ) |