Step |
Hyp |
Ref |
Expression |
1 |
|
lgamgulm.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
2 |
|
lgamgulm.u |
⊢ 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
3 |
|
lgamgulm.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) |
4 |
|
lgamgulm.t |
⊢ 𝑇 = ( 𝑚 ∈ ℕ ↦ if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) ) |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
7 |
|
cnex |
⊢ ℂ ∈ V |
8 |
2 7
|
rabex2 |
⊢ 𝑈 ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
10 |
1 2
|
lgamgulmlem1 |
⊢ ( 𝜑 → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑈 ) |
13 |
11 12
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
14 |
13
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ℂ ) |
15 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑚 ∈ ℕ ) |
16 |
15
|
peano2nnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑚 + 1 ) ∈ ℕ ) |
17 |
16
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
18 |
15
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑚 ∈ ℝ+ ) |
19 |
17 18
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ+ ) |
20 |
19
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℂ ) |
22 |
14 21
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) ∈ ℂ ) |
23 |
15
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑚 ∈ ℂ ) |
24 |
15
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑚 ≠ 0 ) |
25 |
14 23 24
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑧 / 𝑚 ) ∈ ℂ ) |
26 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → 1 ∈ ℂ ) |
27 |
25 26
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝑧 / 𝑚 ) + 1 ) ∈ ℂ ) |
28 |
13 15
|
dmgmdivn0 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝑧 / 𝑚 ) + 1 ) ≠ 0 ) |
29 |
27 28
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ∈ ℂ ) |
30 |
22 29
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ∈ ℂ ) |
31 |
30
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) : 𝑈 ⟶ ℂ ) |
32 |
7 8
|
elmap |
⊢ ( ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ∈ ( ℂ ↑m 𝑈 ) ↔ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) : 𝑈 ⟶ ℂ ) |
33 |
31 32
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ∈ ( ℂ ↑m 𝑈 ) ) |
34 |
33 3
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℂ ↑m 𝑈 ) ) |
35 |
|
nnex |
⊢ ℕ ∈ V |
36 |
35
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) ) ∈ V |
37 |
4 36
|
eqeltri |
⊢ 𝑇 ∈ V |
38 |
37
|
a1i |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
39 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑅 ∈ ℕ ) |
40 |
39
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑅 ∈ ℝ ) |
41 |
|
2re |
⊢ 2 ∈ ℝ |
42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 2 ∈ ℝ ) |
43 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℝ ) |
44 |
40 43
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑅 + 1 ) ∈ ℝ ) |
45 |
42 44
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2 · ( 𝑅 + 1 ) ) ∈ ℝ ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
47 |
46
|
nnsqcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ 2 ) ∈ ℕ ) |
48 |
45 47
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ∈ ℝ ) |
49 |
40 48
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) ∈ ℝ ) |
50 |
46
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
51 |
50
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
52 |
46
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
53 |
51 52
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ+ ) |
54 |
53
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℝ ) |
55 |
40 54
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) ∈ ℝ ) |
56 |
39
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑅 + 1 ) ∈ ℕ ) |
57 |
56
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑅 + 1 ) ∈ ℝ+ ) |
58 |
57 52
|
rpmulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑅 + 1 ) · 𝑚 ) ∈ ℝ+ ) |
59 |
58
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) ∈ ℝ ) |
60 |
|
pire |
⊢ π ∈ ℝ |
61 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → π ∈ ℝ ) |
62 |
59 61
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ∈ ℝ ) |
63 |
55 62
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ∈ ℝ ) |
64 |
49 63
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) ∈ ℝ ) |
65 |
64 4
|
fmptd |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ℝ ) |
66 |
65
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ 𝑛 ) ∈ ℝ ) |
67 |
1 2 3 4
|
lgamgulmlem5 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) ) ≤ ( 𝑇 ‘ 𝑛 ) ) |
68 |
1 2 3 4
|
lgamgulmlem4 |
⊢ ( 𝜑 → seq 1 ( + , 𝑇 ) ∈ dom ⇝ ) |
69 |
5 6 9 34 38 66 67 68
|
mtest |
⊢ ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) ∈ dom ( ⇝𝑢 ‘ 𝑈 ) ) |
70 |
|
1zzd |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → 1 ∈ ℤ ) |
71 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → 𝑈 ∈ V ) |
72 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → 𝐺 : ℕ ⟶ ( ℂ ↑m 𝑈 ) ) |
73 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → 𝑇 ∈ V ) |
74 |
66
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ 𝑛 ) ∈ ℝ ) |
75 |
67
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑦 ) ) ≤ ( 𝑇 ‘ 𝑛 ) ) |
76 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → seq 1 ( + , 𝑇 ) ∈ dom ⇝ ) |
77 |
|
simpr |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) |
78 |
5 70 71 72 73 74 75 76 77
|
mtestbdd |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑈 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑦 ) ) ≤ 𝑟 ) |
79 |
|
nfcv |
⊢ Ⅎ 𝑧 abs |
80 |
|
nffvmpt1 |
⊢ Ⅎ 𝑧 ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑦 ) |
81 |
79 80
|
nffv |
⊢ Ⅎ 𝑧 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑦 ) ) |
82 |
|
nfcv |
⊢ Ⅎ 𝑧 ≤ |
83 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑟 |
84 |
81 82 83
|
nfbr |
⊢ Ⅎ 𝑧 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑦 ) ) ≤ 𝑟 |
85 |
|
nfv |
⊢ Ⅎ 𝑦 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) ≤ 𝑟 |
86 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑧 → ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) ) |
87 |
86
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑦 ) ) ≤ 𝑟 ↔ ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) ≤ 𝑟 ) ) |
88 |
84 85 87
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝑈 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑦 ) ) ≤ 𝑟 ↔ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) ≤ 𝑟 ) |
89 |
|
ulmcl |
⊢ ( seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) → ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) : 𝑈 ⟶ ℂ ) |
90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) : 𝑈 ⟶ ℂ ) |
91 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) = ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) |
92 |
91
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝑈 𝑂 ∈ ℂ ↔ ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) : 𝑈 ⟶ ℂ ) |
93 |
90 92
|
sylibr |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → ∀ 𝑧 ∈ 𝑈 𝑂 ∈ ℂ ) |
94 |
91
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝑈 ∧ 𝑂 ∈ ℂ ) → ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) = 𝑂 ) |
95 |
94
|
fveq2d |
⊢ ( ( 𝑧 ∈ 𝑈 ∧ 𝑂 ∈ ℂ ) → ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) = ( abs ‘ 𝑂 ) ) |
96 |
95
|
breq1d |
⊢ ( ( 𝑧 ∈ 𝑈 ∧ 𝑂 ∈ ℂ ) → ( ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) ≤ 𝑟 ↔ ( abs ‘ 𝑂 ) ≤ 𝑟 ) ) |
97 |
96
|
ralimiaa |
⊢ ( ∀ 𝑧 ∈ 𝑈 𝑂 ∈ ℂ → ∀ 𝑧 ∈ 𝑈 ( ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) ≤ 𝑟 ↔ ( abs ‘ 𝑂 ) ≤ 𝑟 ) ) |
98 |
|
ralbi |
⊢ ( ∀ 𝑧 ∈ 𝑈 ( ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) ≤ 𝑟 ↔ ( abs ‘ 𝑂 ) ≤ 𝑟 ) → ( ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) ≤ 𝑟 ↔ ∀ 𝑧 ∈ 𝑈 ( abs ‘ 𝑂 ) ≤ 𝑟 ) ) |
99 |
93 97 98
|
3syl |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → ( ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑧 ) ) ≤ 𝑟 ↔ ∀ 𝑧 ∈ 𝑈 ( abs ‘ 𝑂 ) ≤ 𝑟 ) ) |
100 |
88 99
|
syl5bb |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → ( ∀ 𝑦 ∈ 𝑈 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑦 ) ) ≤ 𝑟 ↔ ∀ 𝑧 ∈ 𝑈 ( abs ‘ 𝑂 ) ≤ 𝑟 ) ) |
101 |
100
|
rexbidv |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → ( ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑈 ( abs ‘ ( ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ‘ 𝑦 ) ) ≤ 𝑟 ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ 𝑂 ) ≤ 𝑟 ) ) |
102 |
78 101
|
mpbid |
⊢ ( ( 𝜑 ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ 𝑂 ) ≤ 𝑟 ) |
103 |
102
|
ex |
⊢ ( 𝜑 → ( seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) → ∃ 𝑟 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ 𝑂 ) ≤ 𝑟 ) ) |
104 |
69 103
|
jca |
⊢ ( 𝜑 → ( seq 1 ( ∘f + , 𝐺 ) ∈ dom ( ⇝𝑢 ‘ 𝑈 ) ∧ ( seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ 𝑂 ) → ∃ 𝑟 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ 𝑂 ) ≤ 𝑟 ) ) ) |