| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mtest.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
| 2 |
|
mtest.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 3 |
|
mtest.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 4 |
|
mtest.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 5 |
|
mtest.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
| 6 |
|
mtest.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 7 |
|
mtest.l |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
| 8 |
|
mtest.d |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ) |
| 9 |
|
mtest.t |
⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) ( ⇝𝑢 ‘ 𝑆 ) 𝑇 ) |
| 10 |
6
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 11 |
1 2 10
|
serf |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) : 𝑍 ⟶ ℂ ) |
| 12 |
11
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ∈ ℂ ) |
| 13 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ∈ ℂ ) |
| 14 |
1
|
climbdd |
⊢ ( ( 𝑁 ∈ ℤ ∧ seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ∧ ∀ 𝑚 ∈ 𝑍 ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ∈ ℂ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) |
| 15 |
2 8 13 14
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → 𝑁 ∈ ℤ ) |
| 17 |
|
seqfn |
⊢ ( 𝑁 ∈ ℤ → seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 18 |
2 17
|
syl |
⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 19 |
1
|
fneq2i |
⊢ ( seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ↔ seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 20 |
18 19
|
sylibr |
⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ) |
| 21 |
|
ulmf2 |
⊢ ( ( seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ∧ seq 𝑁 ( ∘f + , 𝐹 ) ( ⇝𝑢 ‘ 𝑆 ) 𝑇 ) → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 22 |
20 9 21
|
syl2anc |
⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 24 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) |
| 26 |
25
|
mpteq2dv |
⊢ ( 𝑥 = 𝑧 → ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) |
| 27 |
26
|
seqeq3d |
⊢ ( 𝑥 = 𝑧 → seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) = seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ) |
| 28 |
27
|
fveq1d |
⊢ ( 𝑥 = 𝑧 → ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) = ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ) |
| 29 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) |
| 30 |
|
fvex |
⊢ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ∈ V |
| 31 |
28 29 30
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ) |
| 32 |
31
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ) |
| 33 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 34 |
33
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐹 = ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) |
| 35 |
33
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 36 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 38 |
37
|
feqmptd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 39 |
38
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) |
| 40 |
34 39
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐹 = ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) |
| 41 |
40
|
seqeq3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → seq 𝑁 ( ∘f + , 𝐹 ) = seq 𝑁 ( ∘f + , ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) ) |
| 42 |
41
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑁 ( ∘f + , ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) ‘ 𝑛 ) ) |
| 43 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑆 ∈ 𝑉 ) |
| 44 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑛 ∈ 𝑍 ) |
| 45 |
44 1
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 46 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 47 |
46 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
| 48 |
47
|
ssriv |
⊢ ( 𝑁 ... 𝑛 ) ⊆ 𝑍 |
| 49 |
48
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑛 ) ⊆ 𝑍 ) |
| 50 |
37
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℂ ) |
| 51 |
50
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℂ ) |
| 52 |
43 45 49 51
|
seqof2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( seq 𝑁 ( ∘f + , ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ) |
| 53 |
42 52
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ) |
| 54 |
53
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) ) |
| 55 |
47
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
| 56 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 57 |
56
|
fveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 58 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) |
| 59 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ V |
| 60 |
57 58 59
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 61 |
55 60
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 62 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → 𝑧 ∈ 𝑆 ) |
| 63 |
37 62
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) |
| 64 |
63
|
fmpttd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) : 𝑍 ⟶ ℂ ) |
| 65 |
64
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 66 |
47 65
|
sylan2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 67 |
61 66
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 68 |
61 45 67
|
fsumser |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ) |
| 69 |
32 54 68
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) = Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 70 |
69
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) = ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 71 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑛 ) ∈ Fin ) |
| 72 |
71 67
|
fsumcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 73 |
72
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 74 |
67
|
abscld |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 75 |
71 74
|
fsumrecl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 76 |
24
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ ℝ ) |
| 77 |
71 67
|
fsumabs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 78 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝜑 ) |
| 79 |
78 55 6
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 80 |
71 79
|
fsumrecl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 81 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝑧 ∈ 𝑆 ) |
| 82 |
78 55 81 7
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
| 83 |
71 74 79 82
|
fsumle |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) |
| 84 |
80
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 85 |
84
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ ) |
| 86 |
80
|
leabsd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ≤ ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) ) |
| 87 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝑀 ‘ 𝑘 ) = ( 𝑀 ‘ 𝑘 ) ) |
| 88 |
78 55 10
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 89 |
87 45 88
|
fsumser |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) = ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) |
| 90 |
89
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) = ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ) |
| 91 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) |
| 92 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) = ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) |
| 93 |
92
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) = ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ) |
| 94 |
93
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ↔ ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ≤ 𝑦 ) ) |
| 95 |
94
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ≤ 𝑦 ) |
| 96 |
91 95
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ≤ 𝑦 ) |
| 97 |
96
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ≤ 𝑦 ) |
| 98 |
90 97
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) ≤ 𝑦 ) |
| 99 |
80 85 76 86 98
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ≤ 𝑦 ) |
| 100 |
75 80 76 83 99
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 101 |
73 75 76 77 100
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 102 |
70 101
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 103 |
102
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 104 |
|
brralrspcev |
⊢ ( ( 𝑦 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 105 |
24 103 104
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 106 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → seq 𝑁 ( ∘f + , 𝐹 ) ( ⇝𝑢 ‘ 𝑆 ) 𝑇 ) |
| 107 |
1 16 23 105 106
|
ulmbdd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 108 |
15 107
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ 𝑥 ) |