| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mtest.z |
|
| 2 |
|
mtest.n |
|
| 3 |
|
mtest.s |
|
| 4 |
|
mtest.f |
|
| 5 |
|
mtest.m |
|
| 6 |
|
mtest.c |
|
| 7 |
|
mtest.l |
|
| 8 |
|
mtest.d |
|
| 9 |
|
mtest.t |
|
| 10 |
6
|
recnd |
|
| 11 |
1 2 10
|
serf |
|
| 12 |
11
|
ffvelcdmda |
|
| 13 |
12
|
ralrimiva |
|
| 14 |
1
|
climbdd |
|
| 15 |
2 8 13 14
|
syl3anc |
|
| 16 |
2
|
adantr |
|
| 17 |
|
seqfn |
|
| 18 |
2 17
|
syl |
|
| 19 |
1
|
fneq2i |
|
| 20 |
18 19
|
sylibr |
|
| 21 |
|
ulmf2 |
|
| 22 |
20 9 21
|
syl2anc |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simplrl |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
mpteq2dv |
|
| 27 |
26
|
seqeq3d |
|
| 28 |
27
|
fveq1d |
|
| 29 |
|
eqid |
|
| 30 |
|
fvex |
|
| 31 |
28 29 30
|
fvmpt |
|
| 32 |
31
|
adantl |
|
| 33 |
4
|
ad3antrrr |
|
| 34 |
33
|
feqmptd |
|
| 35 |
33
|
ffvelcdmda |
|
| 36 |
|
elmapi |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
feqmptd |
|
| 39 |
38
|
mpteq2dva |
|
| 40 |
34 39
|
eqtrd |
|
| 41 |
40
|
seqeq3d |
|
| 42 |
41
|
fveq1d |
|
| 43 |
3
|
ad3antrrr |
|
| 44 |
|
simplr |
|
| 45 |
44 1
|
eleqtrdi |
|
| 46 |
|
elfzuz |
|
| 47 |
46 1
|
eleqtrrdi |
|
| 48 |
47
|
ssriv |
|
| 49 |
48
|
a1i |
|
| 50 |
37
|
ffvelcdmda |
|
| 51 |
50
|
anasss |
|
| 52 |
43 45 49 51
|
seqof2 |
|
| 53 |
42 52
|
eqtrd |
|
| 54 |
53
|
fveq1d |
|
| 55 |
47
|
adantl |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
fveq1d |
|
| 58 |
|
eqid |
|
| 59 |
|
fvex |
|
| 60 |
57 58 59
|
fvmpt |
|
| 61 |
55 60
|
syl |
|
| 62 |
|
simplr |
|
| 63 |
37 62
|
ffvelcdmd |
|
| 64 |
63
|
fmpttd |
|
| 65 |
64
|
ffvelcdmda |
|
| 66 |
47 65
|
sylan2 |
|
| 67 |
61 66
|
eqeltrrd |
|
| 68 |
61 45 67
|
fsumser |
|
| 69 |
32 54 68
|
3eqtr4d |
|
| 70 |
69
|
fveq2d |
|
| 71 |
|
fzfid |
|
| 72 |
71 67
|
fsumcl |
|
| 73 |
72
|
abscld |
|
| 74 |
67
|
abscld |
|
| 75 |
71 74
|
fsumrecl |
|
| 76 |
24
|
adantr |
|
| 77 |
71 67
|
fsumabs |
|
| 78 |
|
simp-4l |
|
| 79 |
78 55 6
|
syl2anc |
|
| 80 |
71 79
|
fsumrecl |
|
| 81 |
|
simplr |
|
| 82 |
78 55 81 7
|
syl12anc |
|
| 83 |
71 74 79 82
|
fsumle |
|
| 84 |
80
|
recnd |
|
| 85 |
84
|
abscld |
|
| 86 |
80
|
leabsd |
|
| 87 |
|
eqidd |
|
| 88 |
78 55 10
|
syl2anc |
|
| 89 |
87 45 88
|
fsumser |
|
| 90 |
89
|
fveq2d |
|
| 91 |
|
simprr |
|
| 92 |
|
fveq2 |
|
| 93 |
92
|
fveq2d |
|
| 94 |
93
|
breq1d |
|
| 95 |
94
|
rspccva |
|
| 96 |
91 95
|
sylan |
|
| 97 |
96
|
adantr |
|
| 98 |
90 97
|
eqbrtrd |
|
| 99 |
80 85 76 86 98
|
letrd |
|
| 100 |
75 80 76 83 99
|
letrd |
|
| 101 |
73 75 76 77 100
|
letrd |
|
| 102 |
70 101
|
eqbrtrd |
|
| 103 |
102
|
ralrimiva |
|
| 104 |
|
brralrspcev |
|
| 105 |
24 103 104
|
syl2anc |
|
| 106 |
9
|
adantr |
|
| 107 |
1 16 23 105 106
|
ulmbdd |
|
| 108 |
15 107
|
rexlimddv |
|