Metamath Proof Explorer


Theorem seqof2

Description: Distribute function operation through a sequence. Maps-to notation version of seqof . (Contributed by Mario Carneiro, 7-Jul-2017)

Ref Expression
Hypotheses seqof2.1 φAV
seqof2.2 φNM
seqof2.3 φMNB
seqof2.4 φxBzAXW
Assertion seqof2 φseqMf+˙xBzAXN=zAseqM+˙xBXN

Proof

Step Hyp Ref Expression
1 seqof2.1 φAV
2 seqof2.2 φNM
3 seqof2.3 φMNB
4 seqof2.4 φxBzAXW
5 nfv xφnMN
6 nffvmpt1 _xxBzAXn
7 nfcv _xA
8 nffvmpt1 _xxBXn
9 7 8 nfmpt _xzAxBXn
10 6 9 nfeq xxBzAXn=zAxBXn
11 5 10 nfim xφnMNxBzAXn=zAxBXn
12 eleq1w x=nxMNnMN
13 12 anbi2d x=nφxMNφnMN
14 fveq2 x=nxBzAXx=xBzAXn
15 fveq2 x=nxBXx=xBXn
16 15 mpteq2dv x=nzAxBXx=zAxBXn
17 14 16 eqeq12d x=nxBzAXx=zAxBXxxBzAXn=zAxBXn
18 13 17 imbi12d x=nφxMNxBzAXx=zAxBXxφnMNxBzAXn=zAxBXn
19 3 sselda φxMNxB
20 1 adantr φxMNAV
21 20 mptexd φxMNzAXV
22 eqid xBzAX=xBzAX
23 22 fvmpt2 xBzAXVxBzAXx=zAX
24 19 21 23 syl2anc φxMNxBzAXx=zAX
25 19 adantr φxMNzAxB
26 simpll φxMNzAφ
27 simpr φxMNzAzA
28 26 25 27 4 syl12anc φxMNzAXW
29 eqid xBX=xBX
30 29 fvmpt2 xBXWxBXx=X
31 25 28 30 syl2anc φxMNzAxBXx=X
32 31 mpteq2dva φxMNzAxBXx=zAX
33 24 32 eqtr4d φxMNxBzAXx=zAxBXx
34 11 18 33 chvarfv φnMNxBzAXn=zAxBXn
35 nfcv _yxBXn
36 nfcsb1v _zy/zxBX
37 nfcv _zn
38 36 37 nffv _zy/zxBXn
39 csbeq1a z=yxBX=y/zxBX
40 39 fveq1d z=yxBXn=y/zxBXn
41 35 38 40 cbvmpt zAxBXn=yAy/zxBXn
42 34 41 eqtrdi φnMNxBzAXn=yAy/zxBXn
43 1 2 42 seqof φseqMf+˙xBzAXN=yAseqM+˙y/zxBXN
44 nfcv _yseqM+˙xBXN
45 nfcv _zM
46 nfcv _z+˙
47 45 46 36 nfseq _zseqM+˙y/zxBX
48 nfcv _zN
49 47 48 nffv _zseqM+˙y/zxBXN
50 39 seqeq3d z=yseqM+˙xBX=seqM+˙y/zxBX
51 50 fveq1d z=yseqM+˙xBXN=seqM+˙y/zxBXN
52 44 49 51 cbvmpt zAseqM+˙xBXN=yAseqM+˙y/zxBXN
53 43 52 eqtr4di φseqMf+˙xBzAXN=zAseqM+˙xBXN