Description: A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ulmbdd.z | |
|
ulmbdd.m | |
||
ulmbdd.f | |
||
ulmbdd.b | |
||
ulmbdd.u | |
||
Assertion | ulmbdd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmbdd.z | |
|
2 | ulmbdd.m | |
|
3 | ulmbdd.f | |
|
4 | ulmbdd.b | |
|
5 | ulmbdd.u | |
|
6 | eqidd | |
|
7 | eqidd | |
|
8 | 1rp | |
|
9 | 8 | a1i | |
10 | 1 2 3 6 7 5 9 | ulmi | |
11 | 1 | r19.2uz | |
12 | r19.26 | |
|
13 | peano2re | |
|
14 | 13 | adantl | |
15 | ulmcl | |
|
16 | 5 15 | syl | |
17 | 16 | ad3antrrr | |
18 | simprl | |
|
19 | 17 18 | ffvelcdmd | |
20 | 19 | abscld | |
21 | 3 | ad3antrrr | |
22 | simpllr | |
|
23 | 21 22 | ffvelcdmd | |
24 | elmapi | |
|
25 | 23 24 | syl | |
26 | 25 18 | ffvelcdmd | |
27 | 26 | abscld | |
28 | 19 26 | subcld | |
29 | 28 | abscld | |
30 | 27 29 | readdcld | |
31 | 14 | adantr | |
32 | 26 19 | pncan3d | |
33 | 32 | fveq2d | |
34 | 26 28 | abstrid | |
35 | 33 34 | eqbrtrrd | |
36 | simplr | |
|
37 | 1re | |
|
38 | 37 | a1i | |
39 | simprrl | |
|
40 | 19 26 | abssubd | |
41 | simprrr | |
|
42 | 40 41 | eqbrtrd | |
43 | ltle | |
|
44 | 29 37 43 | sylancl | |
45 | 42 44 | mpd | |
46 | 27 29 36 38 39 45 | le2addd | |
47 | 20 30 31 35 46 | letrd | |
48 | 47 | expr | |
49 | 48 | ralimdva | |
50 | brralrspcev | |
|
51 | 14 49 50 | syl6an | |
52 | 12 51 | biimtrrid | |
53 | 52 | expd | |
54 | 53 | rexlimdva | |
55 | 4 54 | mpd | |
56 | breq2 | |
|
57 | 56 | ralbidv | |
58 | 57 | cbvrexvw | |
59 | 55 58 | imbitrdi | |
60 | 59 | rexlimdva | |
61 | 11 60 | syl5 | |
62 | 10 61 | mpd | |