| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulmbdd.z |
|
| 2 |
|
ulmbdd.m |
|
| 3 |
|
ulmbdd.f |
|
| 4 |
|
ulmbdd.b |
|
| 5 |
|
ulmbdd.u |
|
| 6 |
|
eqidd |
|
| 7 |
|
eqidd |
|
| 8 |
|
1rp |
|
| 9 |
8
|
a1i |
|
| 10 |
1 2 3 6 7 5 9
|
ulmi |
|
| 11 |
1
|
r19.2uz |
|
| 12 |
|
r19.26 |
|
| 13 |
|
peano2re |
|
| 14 |
13
|
adantl |
|
| 15 |
|
ulmcl |
|
| 16 |
5 15
|
syl |
|
| 17 |
16
|
ad3antrrr |
|
| 18 |
|
simprl |
|
| 19 |
17 18
|
ffvelcdmd |
|
| 20 |
19
|
abscld |
|
| 21 |
3
|
ad3antrrr |
|
| 22 |
|
simpllr |
|
| 23 |
21 22
|
ffvelcdmd |
|
| 24 |
|
elmapi |
|
| 25 |
23 24
|
syl |
|
| 26 |
25 18
|
ffvelcdmd |
|
| 27 |
26
|
abscld |
|
| 28 |
19 26
|
subcld |
|
| 29 |
28
|
abscld |
|
| 30 |
27 29
|
readdcld |
|
| 31 |
14
|
adantr |
|
| 32 |
26 19
|
pncan3d |
|
| 33 |
32
|
fveq2d |
|
| 34 |
26 28
|
abstrid |
|
| 35 |
33 34
|
eqbrtrrd |
|
| 36 |
|
simplr |
|
| 37 |
|
1re |
|
| 38 |
37
|
a1i |
|
| 39 |
|
simprrl |
|
| 40 |
19 26
|
abssubd |
|
| 41 |
|
simprrr |
|
| 42 |
40 41
|
eqbrtrd |
|
| 43 |
|
ltle |
|
| 44 |
29 37 43
|
sylancl |
|
| 45 |
42 44
|
mpd |
|
| 46 |
27 29 36 38 39 45
|
le2addd |
|
| 47 |
20 30 31 35 46
|
letrd |
|
| 48 |
47
|
expr |
|
| 49 |
48
|
ralimdva |
|
| 50 |
|
brralrspcev |
|
| 51 |
14 49 50
|
syl6an |
|
| 52 |
12 51
|
biimtrrid |
|
| 53 |
52
|
expd |
|
| 54 |
53
|
rexlimdva |
|
| 55 |
4 54
|
mpd |
|
| 56 |
|
breq2 |
|
| 57 |
56
|
ralbidv |
|
| 58 |
57
|
cbvrexvw |
|
| 59 |
55 58
|
imbitrdi |
|
| 60 |
59
|
rexlimdva |
|
| 61 |
11 60
|
syl5 |
|
| 62 |
10 61
|
mpd |
|