Metamath Proof Explorer


Theorem mbfulm

Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim .) (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses mbfulm.z Z=M
mbfulm.m φM
mbfulm.f φF:ZMblFn
mbfulm.u φFuSG
Assertion mbfulm φGMblFn

Proof

Step Hyp Ref Expression
1 mbfulm.z Z=M
2 mbfulm.m φM
3 mbfulm.f φF:ZMblFn
4 mbfulm.u φFuSG
5 ulmcl FuSGG:S
6 4 5 syl φG:S
7 6 feqmptd φG=zSGz
8 2 adantr φzSM
9 3 ffnd φFFnZ
10 ulmf2 FFnZFuSGF:ZS
11 9 4 10 syl2anc φF:ZS
12 11 adantr φzSF:ZS
13 simpr φzSzS
14 1 fvexi ZV
15 14 mptex kZFkzV
16 15 a1i φzSkZFkzV
17 fveq2 k=nFk=Fn
18 17 fveq1d k=nFkz=Fnz
19 eqid kZFkz=kZFkz
20 fvex FnzV
21 18 19 20 fvmpt nZkZFkzn=Fnz
22 21 eqcomd nZFnz=kZFkzn
23 22 adantl φzSnZFnz=kZFkzn
24 4 adantr φzSFuSG
25 1 8 12 13 16 23 24 ulmclm φzSkZFkzGz
26 11 ffvelcdmda φkZFkS
27 elmapi FkSFk:S
28 26 27 syl φkZFk:S
29 28 feqmptd φkZFk=zSFkz
30 3 ffvelcdmda φkZFkMblFn
31 29 30 eqeltrrd φkZzSFkzMblFn
32 28 ffvelcdmda φkZzSFkz
33 32 anasss φkZzSFkz
34 1 2 25 31 33 mbflim φzSGzMblFn
35 7 34 eqeltrd φGMblFn