Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim .) (Contributed by Mario Carneiro, 18-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mbfulm.z | |
|
mbfulm.m | |
||
mbfulm.f | |
||
mbfulm.u | |
||
Assertion | mbfulm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfulm.z | |
|
2 | mbfulm.m | |
|
3 | mbfulm.f | |
|
4 | mbfulm.u | |
|
5 | ulmcl | |
|
6 | 4 5 | syl | |
7 | 6 | feqmptd | |
8 | 2 | adantr | |
9 | 3 | ffnd | |
10 | ulmf2 | |
|
11 | 9 4 10 | syl2anc | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 1 | fvexi | |
15 | 14 | mptex | |
16 | 15 | a1i | |
17 | fveq2 | |
|
18 | 17 | fveq1d | |
19 | eqid | |
|
20 | fvex | |
|
21 | 18 19 20 | fvmpt | |
22 | 21 | eqcomd | |
23 | 22 | adantl | |
24 | 4 | adantr | |
25 | 1 8 12 13 16 23 24 | ulmclm | |
26 | 11 | ffvelcdmda | |
27 | elmapi | |
|
28 | 26 27 | syl | |
29 | 28 | feqmptd | |
30 | 3 | ffvelcdmda | |
31 | 29 30 | eqeltrrd | |
32 | 28 | ffvelcdmda | |
33 | 32 | anasss | |
34 | 1 2 25 31 33 | mbflim | |
35 | 7 34 | eqeltrd | |