Metamath Proof Explorer


Theorem iblulm

Description: A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses itgulm.z Z=M
itgulm.m φM
itgulm.f φF:Z𝐿1
itgulm.u φFuSG
itgulm.s φvolS
Assertion iblulm φG𝐿1

Proof

Step Hyp Ref Expression
1 itgulm.z Z=M
2 itgulm.m φM
3 itgulm.f φF:Z𝐿1
4 itgulm.u φFuSG
5 itgulm.s φvolS
6 3 ffnd φFFnZ
7 ulmf2 FFnZFuSGF:ZS
8 6 4 7 syl2anc φF:ZS
9 eqidd φkZxSFkx=Fkx
10 eqidd φxSGx=Gx
11 1rp 1+
12 11 a1i φ1+
13 1 2 8 9 10 4 12 ulmi φjZkjxSFkxGx<1
14 1 r19.2uz jZkjxSFkxGx<1kZxSFkxGx<1
15 13 14 syl φkZxSFkxGx<1
16 ulmcl FuSGG:S
17 4 16 syl φG:S
18 17 adantr φkZxSFkxGx<1G:S
19 18 feqmptd φkZxSFkxGx<1G=zSGz
20 8 ffvelcdmda φkZFkS
21 elmapi FkSFk:S
22 20 21 syl φkZFk:S
23 22 adantrr φkZxSFkxGx<1Fk:S
24 23 ffvelcdmda φkZxSFkxGx<1zSFkz
25 18 ffvelcdmda φkZxSFkxGx<1zSGz
26 24 25 nncand φkZxSFkxGx<1zSFkzFkzGz=Gz
27 26 mpteq2dva φkZxSFkxGx<1zSFkzFkzGz=zSGz
28 19 27 eqtr4d φkZxSFkxGx<1G=zSFkzFkzGz
29 23 feqmptd φkZxSFkxGx<1Fk=zSFkz
30 3 ffvelcdmda φkZFk𝐿1
31 30 adantrr φkZxSFkxGx<1Fk𝐿1
32 29 31 eqeltrrd φkZxSFkxGx<1zSFkz𝐿1
33 24 25 subcld φkZxSFkxGx<1zSFkzGz
34 ulmscl FuSGSV
35 4 34 syl φSV
36 35 adantr φkZxSFkxGx<1SV
37 36 24 25 29 19 offval2 φkZxSFkxGx<1FkfG=zSFkzGz
38 iblmbf Fk𝐿1FkMblFn
39 31 38 syl φkZxSFkxGx<1FkMblFn
40 iblmbf x𝐿1xMblFn
41 40 ssriv 𝐿1MblFn
42 fss F:Z𝐿1𝐿1MblFnF:ZMblFn
43 3 41 42 sylancl φF:ZMblFn
44 1 2 43 4 mbfulm φGMblFn
45 44 adantr φkZxSFkxGx<1GMblFn
46 39 45 mbfsub φkZxSFkxGx<1FkfGMblFn
47 37 46 eqeltrrd φkZxSFkxGx<1zSFkzGzMblFn
48 eqid zSFkzGz=zSFkzGz
49 48 33 dmmptd φkZxSFkxGx<1domzSFkzGz=S
50 49 fveq2d φkZxSFkxGx<1voldomzSFkzGz=volS
51 5 adantr φkZxSFkxGx<1volS
52 50 51 eqeltrd φkZxSFkxGx<1voldomzSFkzGz
53 1re 1
54 22 ffvelcdmda φkZxSFkx
55 17 adantr φkZG:S
56 55 ffvelcdmda φkZxSGx
57 54 56 subcld φkZxSFkxGx
58 57 abscld φkZxSFkxGx
59 ltle FkxGx1FkxGx<1FkxGx1
60 58 53 59 sylancl φkZxSFkxGx<1FkxGx1
61 fveq2 z=xFkz=Fkx
62 fveq2 z=xGz=Gx
63 61 62 oveq12d z=xFkzGz=FkxGx
64 ovex FkxGxV
65 63 48 64 fvmpt xSzSFkzGzx=FkxGx
66 65 adantl φkZxSzSFkzGzx=FkxGx
67 66 fveq2d φkZxSzSFkzGzx=FkxGx
68 67 breq1d φkZxSzSFkzGzx1FkxGx1
69 60 68 sylibrd φkZxSFkxGx<1zSFkzGzx1
70 69 ralimdva φkZxSFkxGx<1xSzSFkzGzx1
71 70 impr φkZxSFkxGx<1xSzSFkzGzx1
72 49 raleqdv φkZxSFkxGx<1xdomzSFkzGzzSFkzGzx1xSzSFkzGzx1
73 71 72 mpbird φkZxSFkxGx<1xdomzSFkzGzzSFkzGzx1
74 brralrspcev 1xdomzSFkzGzzSFkzGzx1rxdomzSFkzGzzSFkzGzxr
75 53 73 74 sylancr φkZxSFkxGx<1rxdomzSFkzGzzSFkzGzxr
76 bddibl zSFkzGzMblFnvoldomzSFkzGzrxdomzSFkzGzzSFkzGzxrzSFkzGz𝐿1
77 47 52 75 76 syl3anc φkZxSFkxGx<1zSFkzGz𝐿1
78 24 32 33 77 iblsub φkZxSFkxGx<1zSFkzFkzGz𝐿1
79 28 78 eqeltrd φkZxSFkxGx<1G𝐿1
80 15 79 rexlimddv φG𝐿1