| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgulm.z |
|
| 2 |
|
itgulm.m |
|
| 3 |
|
itgulm.f |
|
| 4 |
|
itgulm.u |
|
| 5 |
|
itgulm.s |
|
| 6 |
3
|
ffnd |
|
| 7 |
|
ulmf2 |
|
| 8 |
6 4 7
|
syl2anc |
|
| 9 |
|
eqidd |
|
| 10 |
|
eqidd |
|
| 11 |
|
1rp |
|
| 12 |
11
|
a1i |
|
| 13 |
1 2 8 9 10 4 12
|
ulmi |
|
| 14 |
1
|
r19.2uz |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
ulmcl |
|
| 17 |
4 16
|
syl |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
feqmptd |
|
| 20 |
8
|
ffvelcdmda |
|
| 21 |
|
elmapi |
|
| 22 |
20 21
|
syl |
|
| 23 |
22
|
adantrr |
|
| 24 |
23
|
ffvelcdmda |
|
| 25 |
18
|
ffvelcdmda |
|
| 26 |
24 25
|
nncand |
|
| 27 |
26
|
mpteq2dva |
|
| 28 |
19 27
|
eqtr4d |
|
| 29 |
23
|
feqmptd |
|
| 30 |
3
|
ffvelcdmda |
|
| 31 |
30
|
adantrr |
|
| 32 |
29 31
|
eqeltrrd |
|
| 33 |
24 25
|
subcld |
|
| 34 |
|
ulmscl |
|
| 35 |
4 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
36 24 25 29 19
|
offval2 |
|
| 38 |
|
iblmbf |
|
| 39 |
31 38
|
syl |
|
| 40 |
|
iblmbf |
|
| 41 |
40
|
ssriv |
|
| 42 |
|
fss |
|
| 43 |
3 41 42
|
sylancl |
|
| 44 |
1 2 43 4
|
mbfulm |
|
| 45 |
44
|
adantr |
|
| 46 |
39 45
|
mbfsub |
|
| 47 |
37 46
|
eqeltrrd |
|
| 48 |
|
eqid |
|
| 49 |
48 33
|
dmmptd |
|
| 50 |
49
|
fveq2d |
|
| 51 |
5
|
adantr |
|
| 52 |
50 51
|
eqeltrd |
|
| 53 |
|
1re |
|
| 54 |
22
|
ffvelcdmda |
|
| 55 |
17
|
adantr |
|
| 56 |
55
|
ffvelcdmda |
|
| 57 |
54 56
|
subcld |
|
| 58 |
57
|
abscld |
|
| 59 |
|
ltle |
|
| 60 |
58 53 59
|
sylancl |
|
| 61 |
|
fveq2 |
|
| 62 |
|
fveq2 |
|
| 63 |
61 62
|
oveq12d |
|
| 64 |
|
ovex |
|
| 65 |
63 48 64
|
fvmpt |
|
| 66 |
65
|
adantl |
|
| 67 |
66
|
fveq2d |
|
| 68 |
67
|
breq1d |
|
| 69 |
60 68
|
sylibrd |
|
| 70 |
69
|
ralimdva |
|
| 71 |
70
|
impr |
|
| 72 |
71 49
|
raleqtrrdv |
|
| 73 |
|
brralrspcev |
|
| 74 |
53 72 73
|
sylancr |
|
| 75 |
|
bddibl |
|
| 76 |
47 52 74 75
|
syl3anc |
|
| 77 |
24 32 33 76
|
iblsub |
|
| 78 |
28 77
|
eqeltrd |
|
| 79 |
15 78
|
rexlimddv |
|