| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgulm.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
itgulm.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
itgulm.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝐿1 ) |
| 4 |
|
itgulm.u |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
| 5 |
|
itgulm.s |
⊢ ( 𝜑 → ( vol ‘ 𝑆 ) ∈ ℝ ) |
| 6 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
| 7 |
|
ulmf2 |
⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 8 |
6 4 7
|
syl2anc |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 11 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 13 |
1 2 8 9 10 4 12
|
ulmi |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) |
| 14 |
1
|
r19.2uz |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) |
| 16 |
|
ulmcl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 17 |
4 16
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 19 |
18
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 = ( 𝑧 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 20 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 21 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 23 |
22
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 24 |
23
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 25 |
18
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 26 |
24 25
|
nncand |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 27 |
26
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 28 |
19 27
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 = ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 29 |
23
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 30 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐿1 ) |
| 31 |
30
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐿1 ) |
| 32 |
29 31
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 33 |
24 25
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
| 34 |
|
ulmscl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) |
| 35 |
4 34
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝑆 ∈ V ) |
| 37 |
36 24 25 29 19
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∘f − 𝐺 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 38 |
|
iblmbf |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝐿1 → ( 𝐹 ‘ 𝑘 ) ∈ MblFn ) |
| 39 |
31 38
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ MblFn ) |
| 40 |
|
iblmbf |
⊢ ( 𝑥 ∈ 𝐿1 → 𝑥 ∈ MblFn ) |
| 41 |
40
|
ssriv |
⊢ 𝐿1 ⊆ MblFn |
| 42 |
|
fss |
⊢ ( ( 𝐹 : 𝑍 ⟶ 𝐿1 ∧ 𝐿1 ⊆ MblFn ) → 𝐹 : 𝑍 ⟶ MblFn ) |
| 43 |
3 41 42
|
sylancl |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ MblFn ) |
| 44 |
1 2 43 4
|
mbfulm |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 ∈ MblFn ) |
| 46 |
39 45
|
mbfsub |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∘f − 𝐺 ) ∈ MblFn ) |
| 47 |
37 46
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ∈ MblFn ) |
| 48 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) |
| 49 |
48 33
|
dmmptd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = 𝑆 ) |
| 50 |
49
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( vol ‘ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) = ( vol ‘ 𝑆 ) ) |
| 51 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( vol ‘ 𝑆 ) ∈ ℝ ) |
| 52 |
50 51
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( vol ‘ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ ℝ ) |
| 53 |
|
1re |
⊢ 1 ∈ ℝ |
| 54 |
22
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ℂ ) |
| 55 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 56 |
55
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 57 |
54 56
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 58 |
57
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 59 |
|
ltle |
⊢ ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ≤ 1 ) ) |
| 60 |
58 53 59
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ≤ 1 ) ) |
| 61 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 63 |
61 62
|
oveq12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 64 |
|
ovex |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ V |
| 65 |
63 48 64
|
fvmpt |
⊢ ( 𝑥 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 66 |
65
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 67 |
66
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 68 |
67
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ≤ 1 ) ) |
| 69 |
60 68
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 70 |
69
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 71 |
70
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) |
| 72 |
71 49
|
raleqtrrdv |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) |
| 73 |
|
brralrspcev |
⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 𝑟 ) |
| 74 |
53 72 73
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 𝑟 ) |
| 75 |
|
bddibl |
⊢ ( ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ∈ MblFn ∧ ( vol ‘ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ ℝ ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 𝑟 ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ∈ 𝐿1 ) |
| 76 |
47 52 74 75
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ∈ 𝐿1 ) |
| 77 |
24 32 33 76
|
iblsub |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ 𝐿1 ) |
| 78 |
28 77
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 ∈ 𝐿1 ) |
| 79 |
15 78
|
rexlimddv |
⊢ ( 𝜑 → 𝐺 ∈ 𝐿1 ) |