Metamath Proof Explorer


Theorem mbfulm

Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim .) (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses mbfulm.z 𝑍 = ( ℤ𝑀 )
mbfulm.m ( 𝜑𝑀 ∈ ℤ )
mbfulm.f ( 𝜑𝐹 : 𝑍 ⟶ MblFn )
mbfulm.u ( 𝜑𝐹 ( ⇝𝑢𝑆 ) 𝐺 )
Assertion mbfulm ( 𝜑𝐺 ∈ MblFn )

Proof

Step Hyp Ref Expression
1 mbfulm.z 𝑍 = ( ℤ𝑀 )
2 mbfulm.m ( 𝜑𝑀 ∈ ℤ )
3 mbfulm.f ( 𝜑𝐹 : 𝑍 ⟶ MblFn )
4 mbfulm.u ( 𝜑𝐹 ( ⇝𝑢𝑆 ) 𝐺 )
5 ulmcl ( 𝐹 ( ⇝𝑢𝑆 ) 𝐺𝐺 : 𝑆 ⟶ ℂ )
6 4 5 syl ( 𝜑𝐺 : 𝑆 ⟶ ℂ )
7 6 feqmptd ( 𝜑𝐺 = ( 𝑧𝑆 ↦ ( 𝐺𝑧 ) ) )
8 2 adantr ( ( 𝜑𝑧𝑆 ) → 𝑀 ∈ ℤ )
9 3 ffnd ( 𝜑𝐹 Fn 𝑍 )
10 ulmf2 ( ( 𝐹 Fn 𝑍𝐹 ( ⇝𝑢𝑆 ) 𝐺 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
11 9 4 10 syl2anc ( 𝜑𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
12 11 adantr ( ( 𝜑𝑧𝑆 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
13 simpr ( ( 𝜑𝑧𝑆 ) → 𝑧𝑆 )
14 1 fvexi 𝑍 ∈ V
15 14 mptex ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) ) ∈ V
16 15 a1i ( ( 𝜑𝑧𝑆 ) → ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) ) ∈ V )
17 fveq2 ( 𝑘 = 𝑛 → ( 𝐹𝑘 ) = ( 𝐹𝑛 ) )
18 17 fveq1d ( 𝑘 = 𝑛 → ( ( 𝐹𝑘 ) ‘ 𝑧 ) = ( ( 𝐹𝑛 ) ‘ 𝑧 ) )
19 eqid ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) ) = ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) )
20 fvex ( ( 𝐹𝑛 ) ‘ 𝑧 ) ∈ V
21 18 19 20 fvmpt ( 𝑛𝑍 → ( ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) ) ‘ 𝑛 ) = ( ( 𝐹𝑛 ) ‘ 𝑧 ) )
22 21 eqcomd ( 𝑛𝑍 → ( ( 𝐹𝑛 ) ‘ 𝑧 ) = ( ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) ) ‘ 𝑛 ) )
23 22 adantl ( ( ( 𝜑𝑧𝑆 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑧 ) = ( ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) ) ‘ 𝑛 ) )
24 4 adantr ( ( 𝜑𝑧𝑆 ) → 𝐹 ( ⇝𝑢𝑆 ) 𝐺 )
25 1 8 12 13 16 23 24 ulmclm ( ( 𝜑𝑧𝑆 ) → ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺𝑧 ) )
26 11 ffvelrnda ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ( ℂ ↑m 𝑆 ) )
27 elmapi ( ( 𝐹𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹𝑘 ) : 𝑆 ⟶ ℂ )
28 26 27 syl ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) : 𝑆 ⟶ ℂ )
29 28 feqmptd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = ( 𝑧𝑆 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) ) )
30 3 ffvelrnda ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ MblFn )
31 29 30 eqeltrrd ( ( 𝜑𝑘𝑍 ) → ( 𝑧𝑆 ↦ ( ( 𝐹𝑘 ) ‘ 𝑧 ) ) ∈ MblFn )
32 28 ffvelrnda ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑧𝑆 ) → ( ( 𝐹𝑘 ) ‘ 𝑧 ) ∈ ℂ )
33 32 anasss ( ( 𝜑 ∧ ( 𝑘𝑍𝑧𝑆 ) ) → ( ( 𝐹𝑘 ) ‘ 𝑧 ) ∈ ℂ )
34 1 2 25 31 33 mbflim ( 𝜑 → ( 𝑧𝑆 ↦ ( 𝐺𝑧 ) ) ∈ MblFn )
35 7 34 eqeltrd ( 𝜑𝐺 ∈ MblFn )