| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfulm.z |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
mbfulm.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
mbfulm.f |
|- ( ph -> F : Z --> MblFn ) |
| 4 |
|
mbfulm.u |
|- ( ph -> F ( ~~>u ` S ) G ) |
| 5 |
|
ulmcl |
|- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
| 6 |
4 5
|
syl |
|- ( ph -> G : S --> CC ) |
| 7 |
6
|
feqmptd |
|- ( ph -> G = ( z e. S |-> ( G ` z ) ) ) |
| 8 |
2
|
adantr |
|- ( ( ph /\ z e. S ) -> M e. ZZ ) |
| 9 |
3
|
ffnd |
|- ( ph -> F Fn Z ) |
| 10 |
|
ulmf2 |
|- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> F : Z --> ( CC ^m S ) ) |
| 11 |
9 4 10
|
syl2anc |
|- ( ph -> F : Z --> ( CC ^m S ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ z e. S ) -> F : Z --> ( CC ^m S ) ) |
| 13 |
|
simpr |
|- ( ( ph /\ z e. S ) -> z e. S ) |
| 14 |
1
|
fvexi |
|- Z e. _V |
| 15 |
14
|
mptex |
|- ( k e. Z |-> ( ( F ` k ) ` z ) ) e. _V |
| 16 |
15
|
a1i |
|- ( ( ph /\ z e. S ) -> ( k e. Z |-> ( ( F ` k ) ` z ) ) e. _V ) |
| 17 |
|
fveq2 |
|- ( k = n -> ( F ` k ) = ( F ` n ) ) |
| 18 |
17
|
fveq1d |
|- ( k = n -> ( ( F ` k ) ` z ) = ( ( F ` n ) ` z ) ) |
| 19 |
|
eqid |
|- ( k e. Z |-> ( ( F ` k ) ` z ) ) = ( k e. Z |-> ( ( F ` k ) ` z ) ) |
| 20 |
|
fvex |
|- ( ( F ` n ) ` z ) e. _V |
| 21 |
18 19 20
|
fvmpt |
|- ( n e. Z -> ( ( k e. Z |-> ( ( F ` k ) ` z ) ) ` n ) = ( ( F ` n ) ` z ) ) |
| 22 |
21
|
eqcomd |
|- ( n e. Z -> ( ( F ` n ) ` z ) = ( ( k e. Z |-> ( ( F ` k ) ` z ) ) ` n ) ) |
| 23 |
22
|
adantl |
|- ( ( ( ph /\ z e. S ) /\ n e. Z ) -> ( ( F ` n ) ` z ) = ( ( k e. Z |-> ( ( F ` k ) ` z ) ) ` n ) ) |
| 24 |
4
|
adantr |
|- ( ( ph /\ z e. S ) -> F ( ~~>u ` S ) G ) |
| 25 |
1 8 12 13 16 23 24
|
ulmclm |
|- ( ( ph /\ z e. S ) -> ( k e. Z |-> ( ( F ` k ) ` z ) ) ~~> ( G ` z ) ) |
| 26 |
11
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( CC ^m S ) ) |
| 27 |
|
elmapi |
|- ( ( F ` k ) e. ( CC ^m S ) -> ( F ` k ) : S --> CC ) |
| 28 |
26 27
|
syl |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) : S --> CC ) |
| 29 |
28
|
feqmptd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( z e. S |-> ( ( F ` k ) ` z ) ) ) |
| 30 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. MblFn ) |
| 31 |
29 30
|
eqeltrrd |
|- ( ( ph /\ k e. Z ) -> ( z e. S |-> ( ( F ` k ) ` z ) ) e. MblFn ) |
| 32 |
28
|
ffvelcdmda |
|- ( ( ( ph /\ k e. Z ) /\ z e. S ) -> ( ( F ` k ) ` z ) e. CC ) |
| 33 |
32
|
anasss |
|- ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) e. CC ) |
| 34 |
1 2 25 31 33
|
mbflim |
|- ( ph -> ( z e. S |-> ( G ` z ) ) e. MblFn ) |
| 35 |
7 34
|
eqeltrd |
|- ( ph -> G e. MblFn ) |