| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbflim.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
mbflim.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
mbflim.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 ) |
| 4 |
|
mbflim.5 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 5 |
|
mbflim.6 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ 𝑉 ) |
| 6 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
| 7 |
6
|
mptex |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ∈ V |
| 8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ∈ V ) |
| 9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
| 10 |
5
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 11 |
4 10
|
mbfmptcl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 12 |
11
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 13 |
12
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℂ ) |
| 14 |
13
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
| 16 |
12
|
recld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 17 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) |
| 18 |
17
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( ℜ ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ 𝐵 ) ) |
| 19 |
15 16 18
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ 𝐵 ) ) |
| 20 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) |
| 21 |
20
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 22 |
15 12 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 23 |
22
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) = ( ℜ ‘ 𝐵 ) ) |
| 24 |
19 23
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 25 |
24
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 26 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑛 ℜ |
| 28 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) |
| 29 |
27 28
|
nffv |
⊢ Ⅎ 𝑛 ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 30 |
26 29
|
nfeq |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 31 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
| 32 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) ) |
| 33 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑛 → ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 34 |
32 33
|
eqeq12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) ) |
| 35 |
30 31 34
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 36 |
25 35
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 37 |
36
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 38 |
1 3 8 9 14 37
|
climre |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ⇝ ( ℜ ‘ 𝐶 ) ) |
| 39 |
11
|
ismbfcn2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |
| 40 |
4 39
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) |
| 41 |
40
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
| 42 |
11
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 43 |
42
|
recld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 44 |
1 2 38 41 43
|
mbflimlem |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ) |
| 45 |
6
|
mptex |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ∈ V |
| 46 |
45
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ∈ V ) |
| 47 |
12
|
imcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 48 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) |
| 49 |
48
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( ℑ ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ 𝐵 ) ) |
| 50 |
15 47 49
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ 𝐵 ) ) |
| 51 |
22
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) = ( ℑ ‘ 𝐵 ) ) |
| 52 |
50 51
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 53 |
52
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 54 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) |
| 55 |
|
nfcv |
⊢ Ⅎ 𝑛 ℑ |
| 56 |
55 28
|
nffv |
⊢ Ⅎ 𝑛 ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 57 |
54 56
|
nfeq |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 58 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
| 59 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) ) |
| 60 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑛 → ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 61 |
59 60
|
eqeq12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) ) |
| 62 |
57 58 61
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 63 |
53 62
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 64 |
63
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 65 |
1 3 46 9 14 64
|
climim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ⇝ ( ℑ ‘ 𝐶 ) ) |
| 66 |
40
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
| 67 |
42
|
imcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 68 |
1 2 65 66 67
|
mbflimlem |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) |
| 69 |
|
climcl |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 → 𝐶 ∈ ℂ ) |
| 70 |
3 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 71 |
70
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) ) |
| 72 |
44 68 71
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |