Metamath Proof Explorer


Theorem r19.2uz

Description: A version of r19.2z for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014)

Ref Expression
Hypothesis rexuz3.1 𝑍 = ( ℤ𝑀 )
Assertion r19.2uz ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜑 → ∃ 𝑘𝑍 𝜑 )

Proof

Step Hyp Ref Expression
1 rexuz3.1 𝑍 = ( ℤ𝑀 )
2 eluzelz ( 𝑗 ∈ ( ℤ𝑀 ) → 𝑗 ∈ ℤ )
3 uzid ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ𝑗 ) )
4 ne0i ( 𝑗 ∈ ( ℤ𝑗 ) → ( ℤ𝑗 ) ≠ ∅ )
5 2 3 4 3syl ( 𝑗 ∈ ( ℤ𝑀 ) → ( ℤ𝑗 ) ≠ ∅ )
6 5 1 eleq2s ( 𝑗𝑍 → ( ℤ𝑗 ) ≠ ∅ )
7 r19.2z ( ( ( ℤ𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ ( ℤ𝑗 ) 𝜑 )
8 6 7 sylan ( ( 𝑗𝑍 ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ ( ℤ𝑗 ) 𝜑 )
9 1 uztrn2 ( ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘𝑍 )
10 9 ex ( 𝑗𝑍 → ( 𝑘 ∈ ( ℤ𝑗 ) → 𝑘𝑍 ) )
11 10 anim1d ( 𝑗𝑍 → ( ( 𝑘 ∈ ( ℤ𝑗 ) ∧ 𝜑 ) → ( 𝑘𝑍𝜑 ) ) )
12 11 reximdv2 ( 𝑗𝑍 → ( ∃ 𝑘 ∈ ( ℤ𝑗 ) 𝜑 → ∃ 𝑘𝑍 𝜑 ) )
13 12 imp ( ( 𝑗𝑍 ∧ ∃ 𝑘 ∈ ( ℤ𝑗 ) 𝜑 ) → ∃ 𝑘𝑍 𝜑 )
14 8 13 syldan ( ( 𝑗𝑍 ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝜑 ) → ∃ 𝑘𝑍 𝜑 )
15 14 rexlimiva ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜑 → ∃ 𝑘𝑍 𝜑 )