Metamath Proof Explorer


Theorem iblsub

Description: Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φxABV
itgadd.2 φxAB𝐿1
itgadd.3 φxACV
itgadd.4 φxAC𝐿1
Assertion iblsub φxABC𝐿1

Proof

Step Hyp Ref Expression
1 itgadd.1 φxABV
2 itgadd.2 φxAB𝐿1
3 itgadd.3 φxACV
4 itgadd.4 φxAC𝐿1
5 iblmbf xAB𝐿1xABMblFn
6 2 5 syl φxABMblFn
7 6 1 mbfmptcl φxAB
8 iblmbf xAC𝐿1xACMblFn
9 4 8 syl φxACMblFn
10 9 3 mbfmptcl φxAC
11 7 10 negsubd φxAB+C=BC
12 11 mpteq2dva φxAB+C=xABC
13 10 negcld φxAC
14 3 4 iblneg φxAC𝐿1
15 7 2 13 14 ibladd φxAB+C𝐿1
16 12 15 eqeltrrd φxABC𝐿1