Metamath Proof Explorer


Theorem itgaddlem1

Description: Lemma for itgadd . (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φ x A B V
itgadd.2 φ x A B 𝐿 1
itgadd.3 φ x A C V
itgadd.4 φ x A C 𝐿 1
itgadd.5 φ x A B
itgadd.6 φ x A C
itgadd.7 φ x A 0 B
itgadd.8 φ x A 0 C
Assertion itgaddlem1 φ A B + C dx = A B dx + A C dx

Proof

Step Hyp Ref Expression
1 itgadd.1 φ x A B V
2 itgadd.2 φ x A B 𝐿 1
3 itgadd.3 φ x A C V
4 itgadd.4 φ x A C 𝐿 1
5 itgadd.5 φ x A B
6 itgadd.6 φ x A C
7 itgadd.7 φ x A 0 B
8 itgadd.8 φ x A 0 C
9 5 6 readdcld φ x A B + C
10 1 2 3 4 ibladd φ x A B + C 𝐿 1
11 5 6 7 8 addge0d φ x A 0 B + C
12 9 10 11 itgposval φ A B + C dx = 2 x if x A B + C 0
13 5 2 7 itgposval φ A B dx = 2 x if x A B 0
14 6 4 8 itgposval φ A C dx = 2 x if x A C 0
15 13 14 oveq12d φ A B dx + A C dx = 2 x if x A B 0 + 2 x if x A C 0
16 5 7 iblpos φ x A B 𝐿 1 x A B MblFn 2 x if x A B 0
17 2 16 mpbid φ x A B MblFn 2 x if x A B 0
18 17 simpld φ x A B MblFn
19 18 5 mbfdm2 φ A dom vol
20 mblss A dom vol A
21 19 20 syl φ A
22 rembl dom vol
23 22 a1i φ dom vol
24 elrege0 B 0 +∞ B 0 B
25 5 7 24 sylanbrc φ x A B 0 +∞
26 0e0icopnf 0 0 +∞
27 26 a1i φ ¬ x A 0 0 +∞
28 25 27 ifclda φ if x A B 0 0 +∞
29 28 adantr φ x A if x A B 0 0 +∞
30 eldifn x A ¬ x A
31 30 adantl φ x A ¬ x A
32 31 iffalsed φ x A if x A B 0 = 0
33 iftrue x A if x A B 0 = B
34 33 mpteq2ia x A if x A B 0 = x A B
35 34 18 eqeltrid φ x A if x A B 0 MblFn
36 21 23 29 32 35 mbfss φ x if x A B 0 MblFn
37 28 adantr φ x if x A B 0 0 +∞
38 37 fmpttd φ x if x A B 0 : 0 +∞
39 17 simprd φ 2 x if x A B 0
40 elrege0 C 0 +∞ C 0 C
41 6 8 40 sylanbrc φ x A C 0 +∞
42 41 27 ifclda φ if x A C 0 0 +∞
43 42 adantr φ x A if x A C 0 0 +∞
44 31 iffalsed φ x A if x A C 0 = 0
45 iftrue x A if x A C 0 = C
46 45 mpteq2ia x A if x A C 0 = x A C
47 6 8 iblpos φ x A C 𝐿 1 x A C MblFn 2 x if x A C 0
48 4 47 mpbid φ x A C MblFn 2 x if x A C 0
49 48 simpld φ x A C MblFn
50 46 49 eqeltrid φ x A if x A C 0 MblFn
51 21 23 43 44 50 mbfss φ x if x A C 0 MblFn
52 42 adantr φ x if x A C 0 0 +∞
53 52 fmpttd φ x if x A C 0 : 0 +∞
54 48 simprd φ 2 x if x A C 0
55 36 38 39 51 53 54 itg2add φ 2 x if x A B 0 + f x if x A C 0 = 2 x if x A B 0 + 2 x if x A C 0
56 reex V
57 56 a1i φ V
58 eqidd φ x if x A B 0 = x if x A B 0
59 eqidd φ x if x A C 0 = x if x A C 0
60 57 37 52 58 59 offval2 φ x if x A B 0 + f x if x A C 0 = x if x A B 0 + if x A C 0
61 33 45 oveq12d x A if x A B 0 + if x A C 0 = B + C
62 iftrue x A if x A B + C 0 = B + C
63 61 62 eqtr4d x A if x A B 0 + if x A C 0 = if x A B + C 0
64 iffalse ¬ x A if x A B 0 = 0
65 iffalse ¬ x A if x A C 0 = 0
66 64 65 oveq12d ¬ x A if x A B 0 + if x A C 0 = 0 + 0
67 00id 0 + 0 = 0
68 66 67 eqtrdi ¬ x A if x A B 0 + if x A C 0 = 0
69 iffalse ¬ x A if x A B + C 0 = 0
70 68 69 eqtr4d ¬ x A if x A B 0 + if x A C 0 = if x A B + C 0
71 63 70 pm2.61i if x A B 0 + if x A C 0 = if x A B + C 0
72 71 mpteq2i x if x A B 0 + if x A C 0 = x if x A B + C 0
73 60 72 eqtrdi φ x if x A B 0 + f x if x A C 0 = x if x A B + C 0
74 73 fveq2d φ 2 x if x A B 0 + f x if x A C 0 = 2 x if x A B + C 0
75 15 55 74 3eqtr2d φ A B dx + A C dx = 2 x if x A B + C 0
76 12 75 eqtr4d φ A B + C dx = A B dx + A C dx