Step |
Hyp |
Ref |
Expression |
1 |
|
itgadd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
itgadd.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
3 |
|
itgadd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
4 |
|
itgadd.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
5 |
|
itgadd.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
6 |
|
itgadd.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
7 |
|
itgadd.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
8 |
|
itgadd.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐶 ) |
9 |
5 6
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
10 |
1 2 3 4
|
ibladd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |
11 |
5 6 7 8
|
addge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( 𝐵 + 𝐶 ) ) |
12 |
9 10 11
|
itgposval |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) ) |
13 |
5 2 7
|
itgposval |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
14 |
6 4 8
|
itgposval |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
16 |
5 7
|
iblpos |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) ) |
17 |
2 16
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) |
18 |
17
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
19 |
18 5
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
20 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
22 |
|
rembl |
⊢ ℝ ∈ dom vol |
23 |
22
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
24 |
|
elrege0 |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
25 |
5 7 24
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
26 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
28 |
25 27
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
30 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
32 |
31
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
33 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
34 |
33
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
35 |
34 18
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ MblFn ) |
36 |
21 23 29 32 35
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ MblFn ) |
37 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
38 |
37
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
39 |
17
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) |
40 |
|
elrege0 |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
41 |
6 8 40
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
42 |
41 27
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
44 |
31
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
45 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
46 |
45
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
47 |
6 8
|
iblpos |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ∈ ℝ ) ) ) |
48 |
4 47
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ∈ ℝ ) ) |
49 |
48
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
50 |
46 49
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ MblFn ) |
51 |
21 23 43 44 50
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ MblFn ) |
52 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
53 |
52
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
54 |
48
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ∈ ℝ ) |
55 |
36 38 39 51 53 54
|
itg2add |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
56 |
|
reex |
⊢ ℝ ∈ V |
57 |
56
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
58 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
59 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
60 |
57 37 52 58 59
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) |
61 |
33 45
|
oveq12d |
⊢ ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
62 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) = ( 𝐵 + 𝐶 ) ) |
63 |
61 62
|
eqtr4d |
⊢ ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) |
64 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
65 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
66 |
64 65
|
oveq12d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 0 + 0 ) ) |
67 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
68 |
66 67
|
eqtrdi |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = 0 ) |
69 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) = 0 ) |
70 |
68 69
|
eqtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) |
71 |
63 70
|
pm2.61i |
⊢ ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) |
72 |
71
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) |
73 |
60 72
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) |
74 |
73
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) ) |
75 |
15 55 74
|
3eqtr2d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) ) |
76 |
12 75
|
eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |