Metamath Proof Explorer


Theorem mbfdm2

Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014)

Ref Expression
Hypotheses mbfmptcl.1 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
mbfmptcl.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
Assertion mbfdm2 ( 𝜑𝐴 ∈ dom vol )

Proof

Step Hyp Ref Expression
1 mbfmptcl.1 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
2 mbfmptcl.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
3 2 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵𝑉 )
4 dmmptg ( ∀ 𝑥𝐴 𝐵𝑉 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
5 3 4 syl ( 𝜑 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
6 mbfdm ( ( 𝑥𝐴𝐵 ) ∈ MblFn → dom ( 𝑥𝐴𝐵 ) ∈ dom vol )
7 1 6 syl ( 𝜑 → dom ( 𝑥𝐴𝐵 ) ∈ dom vol )
8 5 7 eqeltrrd ( 𝜑𝐴 ∈ dom vol )