Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mbfmptcl.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
mbfmptcl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
Assertion | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmptcl.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
2 | mbfmptcl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
3 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
4 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
5 | 3 4 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
6 | mbfdm | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ dom vol ) | |
7 | 1 6 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ dom vol ) |
8 | 5 7 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |