Metamath Proof Explorer


Theorem mbfdm2

Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014)

Ref Expression
Hypotheses mbfmptcl.1
|- ( ph -> ( x e. A |-> B ) e. MblFn )
mbfmptcl.2
|- ( ( ph /\ x e. A ) -> B e. V )
Assertion mbfdm2
|- ( ph -> A e. dom vol )

Proof

Step Hyp Ref Expression
1 mbfmptcl.1
 |-  ( ph -> ( x e. A |-> B ) e. MblFn )
2 mbfmptcl.2
 |-  ( ( ph /\ x e. A ) -> B e. V )
3 2 ralrimiva
 |-  ( ph -> A. x e. A B e. V )
4 dmmptg
 |-  ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A )
5 3 4 syl
 |-  ( ph -> dom ( x e. A |-> B ) = A )
6 mbfdm
 |-  ( ( x e. A |-> B ) e. MblFn -> dom ( x e. A |-> B ) e. dom vol )
7 1 6 syl
 |-  ( ph -> dom ( x e. A |-> B ) e. dom vol )
8 5 7 eqeltrrd
 |-  ( ph -> A e. dom vol )