Metamath Proof Explorer


Theorem iblneg

Description: The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgcnval.1 φxABV
itgcnval.2 φxAB𝐿1
Assertion iblneg φxAB𝐿1

Proof

Step Hyp Ref Expression
1 itgcnval.1 φxABV
2 itgcnval.2 φxAB𝐿1
3 iblmbf xAB𝐿1xABMblFn
4 2 3 syl φxABMblFn
5 4 1 mbfmptcl φxAB
6 5 renegd φxAB=B
7 6 breq2d φxA0B0B
8 7 6 ifbieq1d φxAif0BB0=if0BB0
9 8 mpteq2dva φxAif0BB0=xAif0BB0
10 5 iblcn φxAB𝐿1xAB𝐿1xAB𝐿1
11 2 10 mpbid φxAB𝐿1xAB𝐿1
12 11 simpld φxAB𝐿1
13 5 recld φxAB
14 13 iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1
15 12 14 mpbid φxAif0BB0𝐿1xAif0BB0𝐿1
16 15 simprd φxAif0BB0𝐿1
17 9 16 eqeltrd φxAif0BB0𝐿1
18 6 negeqd φxAB=B
19 13 recnd φxAB
20 19 negnegd φxAB=B
21 18 20 eqtrd φxAB=B
22 21 breq2d φxA0B0B
23 22 21 ifbieq1d φxAif0BB0=if0BB0
24 23 mpteq2dva φxAif0BB0=xAif0BB0
25 15 simpld φxAif0BB0𝐿1
26 24 25 eqeltrd φxAif0BB0𝐿1
27 5 negcld φxAB
28 27 recld φxAB
29 28 iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1
30 17 26 29 mpbir2and φxAB𝐿1
31 5 imnegd φxAB=B
32 31 breq2d φxA0B0B
33 32 31 ifbieq1d φxAif0BB0=if0BB0
34 33 mpteq2dva φxAif0BB0=xAif0BB0
35 11 simprd φxAB𝐿1
36 5 imcld φxAB
37 36 iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1
38 35 37 mpbid φxAif0BB0𝐿1xAif0BB0𝐿1
39 38 simprd φxAif0BB0𝐿1
40 34 39 eqeltrd φxAif0BB0𝐿1
41 31 negeqd φxAB=B
42 36 recnd φxAB
43 42 negnegd φxAB=B
44 41 43 eqtrd φxAB=B
45 44 breq2d φxA0B0B
46 45 44 ifbieq1d φxAif0BB0=if0BB0
47 46 mpteq2dva φxAif0BB0=xAif0BB0
48 38 simpld φxAif0BB0𝐿1
49 47 48 eqeltrd φxAif0BB0𝐿1
50 27 imcld φxAB
51 50 iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1
52 40 49 51 mpbir2and φxAB𝐿1
53 27 iblcn φxAB𝐿1xAB𝐿1xAB𝐿1
54 30 52 53 mpbir2and φxAB𝐿1