Description: The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgcnval.1 | |
|
itgcnval.2 | |
||
Assertion | iblneg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgcnval.1 | |
|
2 | itgcnval.2 | |
|
3 | iblmbf | |
|
4 | 2 3 | syl | |
5 | 4 1 | mbfmptcl | |
6 | 5 | renegd | |
7 | 6 | breq2d | |
8 | 7 6 | ifbieq1d | |
9 | 8 | mpteq2dva | |
10 | 5 | iblcn | |
11 | 2 10 | mpbid | |
12 | 11 | simpld | |
13 | 5 | recld | |
14 | 13 | iblre | |
15 | 12 14 | mpbid | |
16 | 15 | simprd | |
17 | 9 16 | eqeltrd | |
18 | 6 | negeqd | |
19 | 13 | recnd | |
20 | 19 | negnegd | |
21 | 18 20 | eqtrd | |
22 | 21 | breq2d | |
23 | 22 21 | ifbieq1d | |
24 | 23 | mpteq2dva | |
25 | 15 | simpld | |
26 | 24 25 | eqeltrd | |
27 | 5 | negcld | |
28 | 27 | recld | |
29 | 28 | iblre | |
30 | 17 26 29 | mpbir2and | |
31 | 5 | imnegd | |
32 | 31 | breq2d | |
33 | 32 31 | ifbieq1d | |
34 | 33 | mpteq2dva | |
35 | 11 | simprd | |
36 | 5 | imcld | |
37 | 36 | iblre | |
38 | 35 37 | mpbid | |
39 | 38 | simprd | |
40 | 34 39 | eqeltrd | |
41 | 31 | negeqd | |
42 | 36 | recnd | |
43 | 42 | negnegd | |
44 | 41 43 | eqtrd | |
45 | 44 | breq2d | |
46 | 45 44 | ifbieq1d | |
47 | 46 | mpteq2dva | |
48 | 38 | simpld | |
49 | 47 48 | eqeltrd | |
50 | 27 | imcld | |
51 | 50 | iblre | |
52 | 40 49 51 | mpbir2and | |
53 | 27 | iblcn | |
54 | 30 52 53 | mpbir2and | |