| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgcnval.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
itgcnval.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 5 |
4 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 6 |
5
|
renegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
| 7 |
6
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ℜ ‘ - 𝐵 ) ↔ 0 ≤ - ( ℜ ‘ 𝐵 ) ) ) |
| 8 |
7 6
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 9 |
8
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 10 |
5
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 11 |
2 10
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
| 12 |
11
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 13 |
5
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 14 |
13
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 15 |
12 14
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 16 |
15
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 17 |
9 16
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 18 |
6
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ - 𝐵 ) = - - ( ℜ ‘ 𝐵 ) ) |
| 19 |
13
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 20 |
19
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - ( ℜ ‘ 𝐵 ) = ( ℜ ‘ 𝐵 ) ) |
| 21 |
18 20
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ - 𝐵 ) = ( ℜ ‘ 𝐵 ) ) |
| 22 |
21
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ℜ ‘ - 𝐵 ) ↔ 0 ≤ ( ℜ ‘ 𝐵 ) ) ) |
| 23 |
22 21
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 24 |
23
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 25 |
15
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 26 |
24 25
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 27 |
5
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
| 28 |
27
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) ∈ ℝ ) |
| 29 |
28
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 30 |
17 26 29
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ) |
| 31 |
5
|
imnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = - ( ℑ ‘ 𝐵 ) ) |
| 32 |
31
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ℑ ‘ - 𝐵 ) ↔ 0 ≤ - ( ℑ ‘ 𝐵 ) ) ) |
| 33 |
32 31
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 34 |
33
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 35 |
11
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 36 |
5
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 37 |
36
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 38 |
35 37
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 39 |
38
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 40 |
34 39
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 41 |
31
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ - 𝐵 ) = - - ( ℑ ‘ 𝐵 ) ) |
| 42 |
36
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 43 |
42
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - ( ℑ ‘ 𝐵 ) = ( ℑ ‘ 𝐵 ) ) |
| 44 |
41 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ - 𝐵 ) = ( ℑ ‘ 𝐵 ) ) |
| 45 |
44
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ℑ ‘ - 𝐵 ) ↔ 0 ≤ ( ℑ ‘ 𝐵 ) ) ) |
| 46 |
45 44
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 47 |
46
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 48 |
38
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 49 |
47 48
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 50 |
27
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) ∈ ℝ ) |
| 51 |
50
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 52 |
40 49 51
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) |
| 53 |
27
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 54 |
30 52 53
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ 𝐿1 ) |