| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgcnval.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
itgcnval.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 5 |
4 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 6 |
5
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 7 |
5
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 8 |
2 7
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
| 9 |
8
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 10 |
6 9
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 11 |
|
ax-icn |
⊢ i ∈ ℂ |
| 12 |
5
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 13 |
8
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 14 |
12 13
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 15 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
| 16 |
11 14 15
|
sylancr |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
| 17 |
10 16
|
negdid |
⊢ ( 𝜑 → - ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( - ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 18 |
|
0re |
⊢ 0 ∈ ℝ |
| 19 |
|
ifcl |
⊢ ( ( ( ℜ ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 20 |
6 18 19
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 21 |
6
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 22 |
9 21
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 23 |
22
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 24 |
20 23
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 25 |
6
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 26 |
|
ifcl |
⊢ ( ( - ( ℜ ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 27 |
25 18 26
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 28 |
22
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 29 |
27 28
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 30 |
24 29
|
negsubdi2d |
⊢ ( 𝜑 → - ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 31 |
6 9
|
itgreval |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 32 |
31
|
negeqd |
⊢ ( 𝜑 → - ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = - ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 33 |
5
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
| 34 |
33
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) ∈ ℝ ) |
| 35 |
1 2
|
iblneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ 𝐿1 ) |
| 36 |
33
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 37 |
35 36
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) ) |
| 38 |
37
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ - 𝐵 ) ) ∈ 𝐿1 ) |
| 39 |
34 38
|
itgreval |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 ) ) |
| 40 |
5
|
renegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
| 41 |
40
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ℜ ‘ - 𝐵 ) ↔ 0 ≤ - ( ℜ ‘ 𝐵 ) ) ) |
| 42 |
41 40
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 43 |
42
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 = ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) |
| 44 |
40
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ - 𝐵 ) = - - ( ℜ ‘ 𝐵 ) ) |
| 45 |
6
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 46 |
45
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - ( ℜ ‘ 𝐵 ) = ( ℜ ‘ 𝐵 ) ) |
| 47 |
44 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ - 𝐵 ) = ( ℜ ‘ 𝐵 ) ) |
| 48 |
47
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ℜ ‘ - 𝐵 ) ↔ 0 ≤ ( ℜ ‘ 𝐵 ) ) ) |
| 49 |
48 47
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 50 |
49
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 = ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) |
| 51 |
43 50
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ - 𝐵 ) , ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ - 𝐵 ) , - ( ℜ ‘ - 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 52 |
39 51
|
eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ - ( ℜ ‘ 𝐵 ) , - ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℜ ‘ 𝐵 ) , ( ℜ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 53 |
30 32 52
|
3eqtr4d |
⊢ ( 𝜑 → - ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 ) |
| 54 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) → ( i · - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) |
| 55 |
11 14 54
|
sylancr |
⊢ ( 𝜑 → ( i · - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) |
| 56 |
|
ifcl |
⊢ ( ( ( ℑ ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 57 |
12 18 56
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 58 |
12
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 59 |
13 58
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 60 |
59
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 61 |
57 60
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 62 |
12
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 63 |
|
ifcl |
⊢ ( ( - ( ℑ ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 64 |
62 18 63
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 65 |
59
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ∈ 𝐿1 ) |
| 66 |
64 65
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 67 |
61 66
|
negsubdi2d |
⊢ ( 𝜑 → - ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 68 |
5
|
imnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) = - ( ℑ ‘ 𝐵 ) ) |
| 69 |
68
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ℑ ‘ - 𝐵 ) ↔ 0 ≤ - ( ℑ ‘ 𝐵 ) ) ) |
| 70 |
69 68
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 71 |
70
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 = ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) |
| 72 |
68
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ - 𝐵 ) = - - ( ℑ ‘ 𝐵 ) ) |
| 73 |
12
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 74 |
73
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - ( ℑ ‘ 𝐵 ) = ( ℑ ‘ 𝐵 ) ) |
| 75 |
72 74
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ - 𝐵 ) = ( ℑ ‘ 𝐵 ) ) |
| 76 |
75
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ℑ ‘ - 𝐵 ) ↔ 0 ≤ ( ℑ ‘ 𝐵 ) ) ) |
| 77 |
76 75
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) = if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 78 |
77
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 = ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) |
| 79 |
71 78
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 80 |
67 79
|
eqtr4d |
⊢ ( 𝜑 → - ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 ) ) |
| 81 |
12 13
|
itgreval |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 82 |
81
|
negeqd |
⊢ ( 𝜑 → - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = - ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ 𝐵 ) , ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ 𝐵 ) , - ( ℑ ‘ 𝐵 ) , 0 ) d 𝑥 ) ) |
| 83 |
33
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ - 𝐵 ) ∈ ℝ ) |
| 84 |
37
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ - 𝐵 ) ) ∈ 𝐿1 ) |
| 85 |
83 84
|
itgreval |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( ℑ ‘ - 𝐵 ) , ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( ℑ ‘ - 𝐵 ) , - ( ℑ ‘ - 𝐵 ) , 0 ) d 𝑥 ) ) |
| 86 |
80 82 85
|
3eqtr4d |
⊢ ( 𝜑 → - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) |
| 87 |
86
|
oveq2d |
⊢ ( 𝜑 → ( i · - ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) |
| 88 |
55 87
|
eqtr3d |
⊢ ( 𝜑 → - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) |
| 89 |
53 88
|
oveq12d |
⊢ ( 𝜑 → ( - ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + - ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) ) |
| 90 |
17 89
|
eqtrd |
⊢ ( 𝜑 → - ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) ) |
| 91 |
1 2
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 92 |
91
|
negeqd |
⊢ ( 𝜑 → - ∫ 𝐴 𝐵 d 𝑥 = - ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 93 |
33 35
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 - 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ - 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ - 𝐵 ) d 𝑥 ) ) ) |
| 94 |
90 92 93
|
3eqtr4d |
⊢ ( 𝜑 → - ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 - 𝐵 d 𝑥 ) |