Metamath Proof Explorer


Theorem itgulm

Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses itgulm.z Z=M
itgulm.m φM
itgulm.f φF:Z𝐿1
itgulm.u φFuSG
itgulm.s φvolS
Assertion itgulm φkZSFkxdxSGxdx

Proof

Step Hyp Ref Expression
1 itgulm.z Z=M
2 itgulm.m φM
3 itgulm.f φF:Z𝐿1
4 itgulm.u φFuSG
5 itgulm.s φvolS
6 2 adantr φr+M
7 3 ffnd φFFnZ
8 ulmf2 FFnZFuSGF:ZS
9 7 4 8 syl2anc φF:ZS
10 9 adantr φr+F:ZS
11 eqidd φr+nZzSFnz=Fnz
12 eqidd φr+zSGz=Gz
13 4 adantr φr+FuSG
14 simpr φr+r+
15 5 adantr φr+volS
16 ulmcl FuSGG:S
17 fdm G:SdomG=S
18 4 16 17 3syl φdomG=S
19 1 2 3 4 5 iblulm φG𝐿1
20 iblmbf G𝐿1GMblFn
21 mbfdm GMblFndomGdomvol
22 19 20 21 3syl φdomGdomvol
23 18 22 eqeltrrd φSdomvol
24 mblss SdomvolS
25 ovolge0 S0vol*S
26 23 24 25 3syl φ0vol*S
27 mblvol SdomvolvolS=vol*S
28 23 27 syl φvolS=vol*S
29 26 28 breqtrrd φ0volS
30 29 adantr φr+0volS
31 15 30 ge0p1rpd φr+volS+1+
32 14 31 rpdivcld φr+rvolS+1+
33 1 6 10 11 12 13 32 ulmi φr+jZnjzSFnzGz<rvolS+1
34 1 uztrn2 jZnjnZ
35 9 ffvelcdmda φnZFnS
36 elmapi FnSFn:S
37 35 36 syl φnZFn:S
38 37 ffvelcdmda φnZxSFnx
39 38 adantllr φr+nZxSFnx
40 39 adantlrr φr+nZzSFnzGz<rvolS+1xSFnx
41 37 feqmptd φnZFn=xSFnx
42 3 ffvelcdmda φnZFn𝐿1
43 41 42 eqeltrrd φnZxSFnx𝐿1
44 43 ad2ant2r φr+nZzSFnzGz<rvolS+1xSFnx𝐿1
45 4 16 syl φG:S
46 45 ffvelcdmda φxSGx
47 46 ad4ant14 φr+nZzSFnzGz<rvolS+1xSGx
48 45 feqmptd φG=xSGx
49 48 19 eqeltrrd φxSGx𝐿1
50 49 ad2antrr φr+nZzSFnzGz<rvolS+1xSGx𝐿1
51 40 44 47 50 itgsub φr+nZzSFnzGz<rvolS+1SFnxGxdx=SFnxdxSGxdx
52 51 fveq2d φr+nZzSFnzGz<rvolS+1SFnxGxdx=SFnxdxSGxdx
53 40 47 subcld φr+nZzSFnzGz<rvolS+1xSFnxGx
54 40 44 47 50 iblsub φr+nZzSFnzGz<rvolS+1xSFnxGx𝐿1
55 53 54 itgcl φr+nZzSFnzGz<rvolS+1SFnxGxdx
56 55 abscld φr+nZzSFnzGz<rvolS+1SFnxGxdx
57 53 abscld φr+nZzSFnzGz<rvolS+1xSFnxGx
58 53 54 iblabs φr+nZzSFnzGz<rvolS+1xSFnxGx𝐿1
59 57 58 itgrecl φr+nZzSFnzGz<rvolS+1SFnxGxdx
60 rpre r+r
61 60 ad2antlr φr+nZzSFnzGz<rvolS+1r
62 53 54 itgabs φr+nZzSFnzGz<rvolS+1SFnxGxdxSFnxGxdx
63 32 adantr φr+nZzSFnzGz<rvolS+1rvolS+1+
64 63 rpred φr+nZzSFnzGz<rvolS+1rvolS+1
65 5 ad2antrr φr+nZzSFnzGz<rvolS+1volS
66 64 65 remulcld φr+nZzSFnzGz<rvolS+1rvolS+1volS
67 fconstmpt S×rvolS+1=xSrvolS+1
68 23 ad2antrr φr+nZzSFnzGz<rvolS+1Sdomvol
69 63 rpcnd φr+nZzSFnzGz<rvolS+1rvolS+1
70 iblconst SdomvolvolSrvolS+1S×rvolS+1𝐿1
71 68 65 69 70 syl3anc φr+nZzSFnzGz<rvolS+1S×rvolS+1𝐿1
72 67 71 eqeltrrid φr+nZzSFnzGz<rvolS+1xSrvolS+1𝐿1
73 64 adantr φr+nZzSFnzGz<rvolS+1xSrvolS+1
74 simprr φr+nZzSFnzGz<rvolS+1zSFnzGz<rvolS+1
75 fveq2 z=xFnz=Fnx
76 fveq2 z=xGz=Gx
77 75 76 oveq12d z=xFnzGz=FnxGx
78 77 fveq2d z=xFnzGz=FnxGx
79 78 breq1d z=xFnzGz<rvolS+1FnxGx<rvolS+1
80 79 rspccva zSFnzGz<rvolS+1xSFnxGx<rvolS+1
81 74 80 sylan φr+nZzSFnzGz<rvolS+1xSFnxGx<rvolS+1
82 57 73 81 ltled φr+nZzSFnzGz<rvolS+1xSFnxGxrvolS+1
83 58 72 57 73 82 itgle φr+nZzSFnzGz<rvolS+1SFnxGxdxSrvolS+1dx
84 itgconst SdomvolvolSrvolS+1SrvolS+1dx=rvolS+1volS
85 68 65 69 84 syl3anc φr+nZzSFnzGz<rvolS+1SrvolS+1dx=rvolS+1volS
86 83 85 breqtrd φr+nZzSFnzGz<rvolS+1SFnxGxdxrvolS+1volS
87 61 recnd φr+nZzSFnzGz<rvolS+1r
88 65 recnd φr+nZzSFnzGz<rvolS+1volS
89 31 adantr φr+nZzSFnzGz<rvolS+1volS+1+
90 89 rpcnd φr+nZzSFnzGz<rvolS+1volS+1
91 89 rpne0d φr+nZzSFnzGz<rvolS+1volS+10
92 87 88 90 91 div23d φr+nZzSFnzGz<rvolS+1rvolSvolS+1=rvolS+1volS
93 65 ltp1d φr+nZzSFnzGz<rvolS+1volS<volS+1
94 peano2re volSvolS+1
95 65 94 syl φr+nZzSFnzGz<rvolS+1volS+1
96 rpgt0 r+0<r
97 96 ad2antlr φr+nZzSFnzGz<rvolS+10<r
98 ltmul2 volSvolS+1r0<rvolS<volS+1rvolS<rvolS+1
99 65 95 61 97 98 syl112anc φr+nZzSFnzGz<rvolS+1volS<volS+1rvolS<rvolS+1
100 93 99 mpbid φr+nZzSFnzGz<rvolS+1rvolS<rvolS+1
101 61 65 remulcld φr+nZzSFnzGz<rvolS+1rvolS
102 101 61 89 ltdivmul2d φr+nZzSFnzGz<rvolS+1rvolSvolS+1<rrvolS<rvolS+1
103 100 102 mpbird φr+nZzSFnzGz<rvolS+1rvolSvolS+1<r
104 92 103 eqbrtrrd φr+nZzSFnzGz<rvolS+1rvolS+1volS<r
105 59 66 61 86 104 lelttrd φr+nZzSFnzGz<rvolS+1SFnxGxdx<r
106 56 59 61 62 105 lelttrd φr+nZzSFnzGz<rvolS+1SFnxGxdx<r
107 52 106 eqbrtrrd φr+nZzSFnzGz<rvolS+1SFnxdxSGxdx<r
108 107 expr φr+nZzSFnzGz<rvolS+1SFnxdxSGxdx<r
109 34 108 sylan2 φr+jZnjzSFnzGz<rvolS+1SFnxdxSGxdx<r
110 109 anassrs φr+jZnjzSFnzGz<rvolS+1SFnxdxSGxdx<r
111 110 ralimdva φr+jZnjzSFnzGz<rvolS+1njSFnxdxSGxdx<r
112 111 reximdva φr+jZnjzSFnzGz<rvolS+1jZnjSFnxdxSGxdx<r
113 33 112 mpd φr+jZnjSFnxdxSGxdx<r
114 113 ralrimiva φr+jZnjSFnxdxSGxdx<r
115 1 fvexi ZV
116 115 mptex kZSFkxdxV
117 116 a1i φkZSFkxdxV
118 fveq2 k=nFk=Fn
119 118 fveq1d k=nFkx=Fnx
120 119 adantr k=nxSFkx=Fnx
121 120 itgeq2dv k=nSFkxdx=SFnxdx
122 eqid kZSFkxdx=kZSFkxdx
123 itgex SFnxdxV
124 121 122 123 fvmpt nZkZSFkxdxn=SFnxdx
125 124 adantl φnZkZSFkxdxn=SFnxdx
126 46 49 itgcl φSGxdx
127 38 43 itgcl φnZSFnxdx
128 1 2 117 125 126 127 clim2c φkZSFkxdxSGxdxr+jZnjSFnxdxSGxdx<r
129 114 128 mpbird φkZSFkxdxSGxdx