| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgulm.z |
|
| 2 |
|
itgulm.m |
|
| 3 |
|
itgulm.f |
|
| 4 |
|
itgulm.u |
|
| 5 |
|
itgulm.s |
|
| 6 |
2
|
adantr |
|
| 7 |
3
|
ffnd |
|
| 8 |
|
ulmf2 |
|
| 9 |
7 4 8
|
syl2anc |
|
| 10 |
9
|
adantr |
|
| 11 |
|
eqidd |
|
| 12 |
|
eqidd |
|
| 13 |
4
|
adantr |
|
| 14 |
|
simpr |
|
| 15 |
5
|
adantr |
|
| 16 |
|
ulmcl |
|
| 17 |
|
fdm |
|
| 18 |
4 16 17
|
3syl |
|
| 19 |
1 2 3 4 5
|
iblulm |
|
| 20 |
|
iblmbf |
|
| 21 |
|
mbfdm |
|
| 22 |
19 20 21
|
3syl |
|
| 23 |
18 22
|
eqeltrrd |
|
| 24 |
|
mblss |
|
| 25 |
|
ovolge0 |
|
| 26 |
23 24 25
|
3syl |
|
| 27 |
|
mblvol |
|
| 28 |
23 27
|
syl |
|
| 29 |
26 28
|
breqtrrd |
|
| 30 |
29
|
adantr |
|
| 31 |
15 30
|
ge0p1rpd |
|
| 32 |
14 31
|
rpdivcld |
|
| 33 |
1 6 10 11 12 13 32
|
ulmi |
|
| 34 |
1
|
uztrn2 |
|
| 35 |
9
|
ffvelcdmda |
|
| 36 |
|
elmapi |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
ffvelcdmda |
|
| 39 |
38
|
adantllr |
|
| 40 |
39
|
adantlrr |
|
| 41 |
37
|
feqmptd |
|
| 42 |
3
|
ffvelcdmda |
|
| 43 |
41 42
|
eqeltrrd |
|
| 44 |
43
|
ad2ant2r |
|
| 45 |
4 16
|
syl |
|
| 46 |
45
|
ffvelcdmda |
|
| 47 |
46
|
ad4ant14 |
|
| 48 |
45
|
feqmptd |
|
| 49 |
48 19
|
eqeltrrd |
|
| 50 |
49
|
ad2antrr |
|
| 51 |
40 44 47 50
|
itgsub |
|
| 52 |
51
|
fveq2d |
|
| 53 |
40 47
|
subcld |
|
| 54 |
40 44 47 50
|
iblsub |
|
| 55 |
53 54
|
itgcl |
|
| 56 |
55
|
abscld |
|
| 57 |
53
|
abscld |
|
| 58 |
53 54
|
iblabs |
|
| 59 |
57 58
|
itgrecl |
|
| 60 |
|
rpre |
|
| 61 |
60
|
ad2antlr |
|
| 62 |
53 54
|
itgabs |
|
| 63 |
32
|
adantr |
|
| 64 |
63
|
rpred |
|
| 65 |
5
|
ad2antrr |
|
| 66 |
64 65
|
remulcld |
|
| 67 |
|
fconstmpt |
|
| 68 |
23
|
ad2antrr |
|
| 69 |
63
|
rpcnd |
|
| 70 |
|
iblconst |
|
| 71 |
68 65 69 70
|
syl3anc |
|
| 72 |
67 71
|
eqeltrrid |
|
| 73 |
64
|
adantr |
|
| 74 |
|
simprr |
|
| 75 |
|
fveq2 |
|
| 76 |
|
fveq2 |
|
| 77 |
75 76
|
oveq12d |
|
| 78 |
77
|
fveq2d |
|
| 79 |
78
|
breq1d |
|
| 80 |
79
|
rspccva |
|
| 81 |
74 80
|
sylan |
|
| 82 |
57 73 81
|
ltled |
|
| 83 |
58 72 57 73 82
|
itgle |
|
| 84 |
|
itgconst |
|
| 85 |
68 65 69 84
|
syl3anc |
|
| 86 |
83 85
|
breqtrd |
|
| 87 |
61
|
recnd |
|
| 88 |
65
|
recnd |
|
| 89 |
31
|
adantr |
|
| 90 |
89
|
rpcnd |
|
| 91 |
89
|
rpne0d |
|
| 92 |
87 88 90 91
|
div23d |
|
| 93 |
65
|
ltp1d |
|
| 94 |
|
peano2re |
|
| 95 |
65 94
|
syl |
|
| 96 |
|
rpgt0 |
|
| 97 |
96
|
ad2antlr |
|
| 98 |
|
ltmul2 |
|
| 99 |
65 95 61 97 98
|
syl112anc |
|
| 100 |
93 99
|
mpbid |
|
| 101 |
61 65
|
remulcld |
|
| 102 |
101 61 89
|
ltdivmul2d |
|
| 103 |
100 102
|
mpbird |
|
| 104 |
92 103
|
eqbrtrrd |
|
| 105 |
59 66 61 86 104
|
lelttrd |
|
| 106 |
56 59 61 62 105
|
lelttrd |
|
| 107 |
52 106
|
eqbrtrrd |
|
| 108 |
107
|
expr |
|
| 109 |
34 108
|
sylan2 |
|
| 110 |
109
|
anassrs |
|
| 111 |
110
|
ralimdva |
|
| 112 |
111
|
reximdva |
|
| 113 |
33 112
|
mpd |
|
| 114 |
113
|
ralrimiva |
|
| 115 |
1
|
fvexi |
|
| 116 |
115
|
mptex |
|
| 117 |
116
|
a1i |
|
| 118 |
|
fveq2 |
|
| 119 |
118
|
fveq1d |
|
| 120 |
119
|
adantr |
|
| 121 |
120
|
itgeq2dv |
|
| 122 |
|
eqid |
|
| 123 |
|
itgex |
|
| 124 |
121 122 123
|
fvmpt |
|
| 125 |
124
|
adantl |
|
| 126 |
46 49
|
itgcl |
|
| 127 |
38 43
|
itgcl |
|
| 128 |
1 2 117 125 126 127
|
clim2c |
|
| 129 |
114 128
|
mpbird |
|