Metamath Proof Explorer


Theorem itgrecl

Description: Real closure of an integral. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itgrecl.1 φxAB
itgrecl.2 φxAB𝐿1
Assertion itgrecl φABdx

Proof

Step Hyp Ref Expression
1 itgrecl.1 φxAB
2 itgrecl.2 φxAB𝐿1
3 1 2 itgrevallem1 φABdx=2xifxA0BB02xifxA0BB0
4 1 iblrelem φxAB𝐿1xABMblFn2xifxA0BB02xifxA0BB0
5 2 4 mpbid φxABMblFn2xifxA0BB02xifxA0BB0
6 resubcl 2xifxA0BB02xifxA0BB02xifxA0BB02xifxA0BB0
7 6 3adant1 xABMblFn2xifxA0BB02xifxA0BB02xifxA0BB02xifxA0BB0
8 5 7 syl φ2xifxA0BB02xifxA0BB0
9 3 8 eqeltrd φABdx