Step |
Hyp |
Ref |
Expression |
1 |
|
itgabs.1 |
|
2 |
|
itgabs.2 |
|
3 |
1 2
|
itgcl |
|
4 |
3
|
cjcld |
|
5 |
|
iblmbf |
|
6 |
2 5
|
syl |
|
7 |
6 1
|
mbfmptcl |
|
8 |
7
|
ralrimiva |
|
9 |
|
nfv |
|
10 |
|
nfcsb1v |
|
11 |
10
|
nfel1 |
|
12 |
|
csbeq1a |
|
13 |
12
|
eleq1d |
|
14 |
9 11 13
|
cbvralw |
|
15 |
8 14
|
sylib |
|
16 |
15
|
r19.21bi |
|
17 |
|
nfcv |
|
18 |
17 10 12
|
cbvmpt |
|
19 |
18 2
|
eqeltrrid |
|
20 |
4 16 19
|
iblmulc2 |
|
21 |
4
|
adantr |
|
22 |
21 16
|
mulcld |
|
23 |
22
|
iblcn |
|
24 |
20 23
|
mpbid |
|
25 |
24
|
simpld |
|
26 |
|
ovexd |
|
27 |
26 20
|
iblabs |
|
28 |
22
|
recld |
|
29 |
22
|
abscld |
|
30 |
22
|
releabsd |
|
31 |
25 27 28 29 30
|
itgle |
|
32 |
3
|
abscld |
|
33 |
32
|
recnd |
|
34 |
33
|
sqvald |
|
35 |
3
|
absvalsqd |
|
36 |
3 4
|
mulcomd |
|
37 |
12 17 10
|
cbvitg |
|
38 |
37
|
oveq2i |
|
39 |
4 16 19
|
itgmulc2 |
|
40 |
38 39
|
eqtrid |
|
41 |
35 36 40
|
3eqtrd |
|
42 |
41
|
fveq2d |
|
43 |
32
|
resqcld |
|
44 |
43
|
rered |
|
45 |
26 20
|
itgre |
|
46 |
42 44 45
|
3eqtr3d |
|
47 |
34 46
|
eqtr3d |
|
48 |
12
|
fveq2d |
|
49 |
|
nfcv |
|
50 |
|
nfcv |
|
51 |
50 10
|
nffv |
|
52 |
48 49 51
|
cbvitg |
|
53 |
52
|
oveq2i |
|
54 |
16
|
abscld |
|
55 |
16 19
|
iblabs |
|
56 |
33 54 55
|
itgmulc2 |
|
57 |
21 16
|
absmuld |
|
58 |
3
|
adantr |
|
59 |
58
|
abscjd |
|
60 |
59
|
oveq1d |
|
61 |
57 60
|
eqtrd |
|
62 |
61
|
itgeq2dv |
|
63 |
56 62
|
eqtr4d |
|
64 |
53 63
|
eqtrid |
|
65 |
31 47 64
|
3brtr4d |
|
66 |
65
|
adantr |
|
67 |
32
|
adantr |
|
68 |
7
|
abscld |
|
69 |
1 2
|
iblabs |
|
70 |
68 69
|
itgrecl |
|
71 |
70
|
adantr |
|
72 |
|
simpr |
|
73 |
|
lemul2 |
|
74 |
67 71 67 72 73
|
syl112anc |
|
75 |
66 74
|
mpbird |
|
76 |
75
|
ex |
|
77 |
7
|
absge0d |
|
78 |
69 68 77
|
itgge0 |
|
79 |
|
breq1 |
|
80 |
78 79
|
syl5ibcom |
|
81 |
3
|
absge0d |
|
82 |
|
0re |
|
83 |
|
leloe |
|
84 |
82 32 83
|
sylancr |
|
85 |
81 84
|
mpbid |
|
86 |
76 80 85
|
mpjaod |
|