Metamath Proof Explorer


Theorem itgmulc2

Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgmulc2.1 φ C
itgmulc2.2 φ x A B V
itgmulc2.3 φ x A B 𝐿 1
Assertion itgmulc2 φ C A B dx = A C B dx

Proof

Step Hyp Ref Expression
1 itgmulc2.1 φ C
2 itgmulc2.2 φ x A B V
3 itgmulc2.3 φ x A B 𝐿 1
4 1 recld φ C
5 4 recnd φ C
6 5 adantr φ x A C
7 iblmbf x A B 𝐿 1 x A B MblFn
8 3 7 syl φ x A B MblFn
9 8 2 mbfmptcl φ x A B
10 9 recld φ x A B
11 10 recnd φ x A B
12 6 11 mulcld φ x A C B
13 9 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
14 3 13 mpbid φ x A B 𝐿 1 x A B 𝐿 1
15 14 simpld φ x A B 𝐿 1
16 5 10 15 iblmulc2 φ x A C B 𝐿 1
17 12 16 itgcl φ A C B dx
18 ax-icn i
19 9 imcld φ x A B
20 19 recnd φ x A B
21 6 20 mulcld φ x A C B
22 14 simprd φ x A B 𝐿 1
23 5 19 22 iblmulc2 φ x A C B 𝐿 1
24 21 23 itgcl φ A C B dx
25 mulcl i A C B dx i A C B dx
26 18 24 25 sylancr φ i A C B dx
27 1 imcld φ C
28 27 renegcld φ C
29 28 recnd φ C
30 29 adantr φ x A C
31 30 20 mulcld φ x A C B
32 29 19 22 iblmulc2 φ x A C B 𝐿 1
33 31 32 itgcl φ A C B dx
34 27 recnd φ C
35 34 adantr φ x A C
36 35 11 mulcld φ x A C B
37 34 10 15 iblmulc2 φ x A C B 𝐿 1
38 36 37 itgcl φ A C B dx
39 mulcl i A C B dx i A C B dx
40 18 38 39 sylancr φ i A C B dx
41 17 26 33 40 add4d φ A C B dx + i A C B dx + A C B dx + i A C B dx = A C B dx + A C B dx + i A C B dx + i A C B dx
42 2 3 itgcl φ A B dx
43 mulcl i C i C
44 18 34 43 sylancr φ i C
45 2 3 itgcnval φ A B dx = A B dx + i A B dx
46 45 oveq2d φ C A B dx = C A B dx + i A B dx
47 10 15 itgcl φ A B dx
48 19 22 itgcl φ A B dx
49 mulcl i A B dx i A B dx
50 18 48 49 sylancr φ i A B dx
51 5 47 50 adddid φ C A B dx + i A B dx = C A B dx + C i A B dx
52 5 10 15 4 10 itgmulc2lem2 φ C A B dx = A C B dx
53 18 a1i φ i
54 5 53 48 mul12d φ C i A B dx = i C A B dx
55 5 19 22 4 19 itgmulc2lem2 φ C A B dx = A C B dx
56 55 oveq2d φ i C A B dx = i A C B dx
57 54 56 eqtrd φ C i A B dx = i A C B dx
58 52 57 oveq12d φ C A B dx + C i A B dx = A C B dx + i A C B dx
59 46 51 58 3eqtrd φ C A B dx = A C B dx + i A C B dx
60 45 oveq2d φ i C A B dx = i C A B dx + i A B dx
61 44 47 50 adddid φ i C A B dx + i A B dx = i C A B dx + i C i A B dx
62 53 34 47 mulassd φ i C A B dx = i C A B dx
63 34 10 15 27 10 itgmulc2lem2 φ C A B dx = A C B dx
64 63 oveq2d φ i C A B dx = i A C B dx
65 62 64 eqtrd φ i C A B dx = i A C B dx
66 53 34 53 48 mul4d φ i C i A B dx = i i C A B dx
67 ixi i i = 1
68 67 oveq1i i i C A B dx = -1 C A B dx
69 34 48 mulcld φ C A B dx
70 69 mulm1d φ -1 C A B dx = C A B dx
71 68 70 syl5eq φ i i C A B dx = C A B dx
72 34 48 mulneg1d φ C A B dx = C A B dx
73 29 19 22 28 19 itgmulc2lem2 φ C A B dx = A C B dx
74 72 73 eqtr3d φ C A B dx = A C B dx
75 66 71 74 3eqtrd φ i C i A B dx = A C B dx
76 65 75 oveq12d φ i C A B dx + i C i A B dx = i A C B dx + A C B dx
77 40 33 76 comraddd φ i C A B dx + i C i A B dx = A C B dx + i A C B dx
78 60 61 77 3eqtrd φ i C A B dx = A C B dx + i A C B dx
79 59 78 oveq12d φ C A B dx + i C A B dx = A C B dx + i A C B dx + A C B dx + i A C B dx
80 5 42 44 79 joinlmuladdmuld φ C + i C A B dx = A C B dx + i A C B dx + A C B dx + i A C B dx
81 35 20 mulcld φ x A C B
82 12 81 negsubd φ x A C B + C B = C B C B
83 35 20 mulneg1d φ x A C B = C B
84 83 oveq2d φ x A C B + C B = C B + C B
85 1 adantr φ x A C
86 85 9 remuld φ x A C B = C B C B
87 82 84 86 3eqtr4d φ x A C B + C B = C B
88 87 itgeq2dv φ A C B + C B dx = A C B dx
89 12 16 31 32 itgadd φ A C B + C B dx = A C B dx + A C B dx
90 88 89 eqtr3d φ A C B dx = A C B dx + A C B dx
91 85 9 immuld φ x A C B = C B + C B
92 91 itgeq2dv φ A C B dx = A C B + C B dx
93 21 23 36 37 itgadd φ A C B + C B dx = A C B dx + A C B dx
94 92 93 eqtrd φ A C B dx = A C B dx + A C B dx
95 94 oveq2d φ i A C B dx = i A C B dx + A C B dx
96 53 24 38 adddid φ i A C B dx + A C B dx = i A C B dx + i A C B dx
97 95 96 eqtrd φ i A C B dx = i A C B dx + i A C B dx
98 90 97 oveq12d φ A C B dx + i A C B dx = A C B dx + A C B dx + i A C B dx + i A C B dx
99 41 80 98 3eqtr4d φ C + i C A B dx = A C B dx + i A C B dx
100 1 replimd φ C = C + i C
101 100 oveq1d φ C A B dx = C + i C A B dx
102 85 9 mulcld φ x A C B
103 1 2 3 iblmulc2 φ x A C B 𝐿 1
104 102 103 itgcnval φ A C B dx = A C B dx + i A C B dx
105 99 101 104 3eqtr4d φ C A B dx = A C B dx