Metamath Proof Explorer


Theorem itgulm2

Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses itgulm2.z Z=M
itgulm2.m φM
itgulm2.l φkZxSA𝐿1
itgulm2.u φkZxSAuSxSB
itgulm2.s φvolS
Assertion itgulm2 φxSB𝐿1kZSAdxSBdx

Proof

Step Hyp Ref Expression
1 itgulm2.z Z=M
2 itgulm2.m φM
3 itgulm2.l φkZxSA𝐿1
4 itgulm2.u φkZxSAuSxSB
5 itgulm2.s φvolS
6 3 fmpttd φkZxSA:Z𝐿1
7 1 2 6 4 5 iblulm φxSB𝐿1
8 1 2 6 4 5 itgulm φnZSkZxSAnzdzSxSBzdz
9 nfcv _kS
10 nffvmpt1 _kkZxSAn
11 nfcv _kz
12 10 11 nffv _kkZxSAnz
13 9 12 nfitg _kSkZxSAnzdz
14 nfcv _nSkZxSAkxdx
15 fveq2 z=xkZxSAnz=kZxSAnx
16 nfcv _xZ
17 nfmpt1 _xxSA
18 16 17 nfmpt _xkZxSA
19 nfcv _xn
20 18 19 nffv _xkZxSAn
21 nfcv _xz
22 20 21 nffv _xkZxSAnz
23 nfcv _zkZxSAnx
24 15 22 23 cbvitg SkZxSAnzdz=SkZxSAnxdx
25 fveq2 n=kkZxSAn=kZxSAk
26 25 fveq1d n=kkZxSAnx=kZxSAkx
27 26 adantr n=kxSkZxSAnx=kZxSAkx
28 27 itgeq2dv n=kSkZxSAnxdx=SkZxSAkxdx
29 24 28 eqtrid n=kSkZxSAnzdz=SkZxSAkxdx
30 13 14 29 cbvmpt nZSkZxSAnzdz=kZSkZxSAkxdx
31 simplr φkZxSkZ
32 ulmscl kZxSAuSxSBSV
33 mptexg SVxSAV
34 4 32 33 3syl φxSAV
35 34 ad2antrr φkZxSxSAV
36 eqid kZxSA=kZxSA
37 36 fvmpt2 kZxSAVkZxSAk=xSA
38 31 35 37 syl2anc φkZxSkZxSAk=xSA
39 38 fveq1d φkZxSkZxSAkx=xSAx
40 simpr φkZxSxS
41 34 ralrimivw φkZxSAV
42 36 fnmpt kZxSAVkZxSAFnZ
43 41 42 syl φkZxSAFnZ
44 ulmf2 kZxSAFnZkZxSAuSxSBkZxSA:ZS
45 43 4 44 syl2anc φkZxSA:ZS
46 45 fvmptelcdm φkZxSAS
47 elmapi xSASxSA:S
48 46 47 syl φkZxSA:S
49 48 fvmptelcdm φkZxSA
50 eqid xSA=xSA
51 50 fvmpt2 xSAxSAx=A
52 40 49 51 syl2anc φkZxSxSAx=A
53 39 52 eqtrd φkZxSkZxSAkx=A
54 53 itgeq2dv φkZSkZxSAkxdx=SAdx
55 54 mpteq2dva φkZSkZxSAkxdx=kZSAdx
56 30 55 eqtrid φnZSkZxSAnzdz=kZSAdx
57 fveq2 z=xxSBz=xSBx
58 nffvmpt1 _xxSBz
59 nfcv _zxSBx
60 57 58 59 cbvitg SxSBzdz=SxSBxdx
61 simpr φxSxS
62 ulmcl kZxSAuSxSBxSB:S
63 4 62 syl φxSB:S
64 63 fvmptelcdm φxSB
65 eqid xSB=xSB
66 65 fvmpt2 xSBxSBx=B
67 61 64 66 syl2anc φxSxSBx=B
68 67 itgeq2dv φSxSBxdx=SBdx
69 60 68 eqtrid φSxSBzdz=SBdx
70 8 56 69 3brtr3d φkZSAdxSBdx
71 7 70 jca φxSB𝐿1kZSAdxSBdx