Step |
Hyp |
Ref |
Expression |
1 |
|
itgulm2.z |
|
2 |
|
itgulm2.m |
|
3 |
|
itgulm2.l |
|
4 |
|
itgulm2.u |
|
5 |
|
itgulm2.s |
|
6 |
3
|
fmpttd |
|
7 |
1 2 6 4 5
|
iblulm |
|
8 |
1 2 6 4 5
|
itgulm |
|
9 |
|
nfcv |
|
10 |
|
nffvmpt1 |
|
11 |
|
nfcv |
|
12 |
10 11
|
nffv |
|
13 |
9 12
|
nfitg |
|
14 |
|
nfcv |
|
15 |
|
fveq2 |
|
16 |
|
nfcv |
|
17 |
|
nfmpt1 |
|
18 |
16 17
|
nfmpt |
|
19 |
|
nfcv |
|
20 |
18 19
|
nffv |
|
21 |
|
nfcv |
|
22 |
20 21
|
nffv |
|
23 |
|
nfcv |
|
24 |
15 22 23
|
cbvitg |
|
25 |
|
fveq2 |
|
26 |
25
|
fveq1d |
|
27 |
26
|
adantr |
|
28 |
27
|
itgeq2dv |
|
29 |
24 28
|
eqtrid |
|
30 |
13 14 29
|
cbvmpt |
|
31 |
|
simplr |
|
32 |
|
ulmscl |
|
33 |
|
mptexg |
|
34 |
4 32 33
|
3syl |
|
35 |
34
|
ad2antrr |
|
36 |
|
eqid |
|
37 |
36
|
fvmpt2 |
|
38 |
31 35 37
|
syl2anc |
|
39 |
38
|
fveq1d |
|
40 |
|
simpr |
|
41 |
34
|
ralrimivw |
|
42 |
36
|
fnmpt |
|
43 |
41 42
|
syl |
|
44 |
|
ulmf2 |
|
45 |
43 4 44
|
syl2anc |
|
46 |
45
|
fvmptelrn |
|
47 |
|
elmapi |
|
48 |
46 47
|
syl |
|
49 |
48
|
fvmptelrn |
|
50 |
|
eqid |
|
51 |
50
|
fvmpt2 |
|
52 |
40 49 51
|
syl2anc |
|
53 |
39 52
|
eqtrd |
|
54 |
53
|
itgeq2dv |
|
55 |
54
|
mpteq2dva |
|
56 |
30 55
|
eqtrid |
|
57 |
|
fveq2 |
|
58 |
|
nffvmpt1 |
|
59 |
|
nfcv |
|
60 |
57 58 59
|
cbvitg |
|
61 |
|
simpr |
|
62 |
|
ulmcl |
|
63 |
4 62
|
syl |
|
64 |
63
|
fvmptelrn |
|
65 |
|
eqid |
|
66 |
65
|
fvmpt2 |
|
67 |
61 64 66
|
syl2anc |
|
68 |
67
|
itgeq2dv |
|
69 |
60 68
|
eqtrid |
|
70 |
8 56 69
|
3brtr3d |
|
71 |
7 70
|
jca |
|