Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgulm2.z | |
|
itgulm2.m | |
||
itgulm2.l | |
||
itgulm2.u | |
||
itgulm2.s | |
||
Assertion | itgulm2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgulm2.z | |
|
2 | itgulm2.m | |
|
3 | itgulm2.l | |
|
4 | itgulm2.u | |
|
5 | itgulm2.s | |
|
6 | 3 | fmpttd | |
7 | 1 2 6 4 5 | iblulm | |
8 | 1 2 6 4 5 | itgulm | |
9 | nfcv | |
|
10 | nffvmpt1 | |
|
11 | nfcv | |
|
12 | 10 11 | nffv | |
13 | 9 12 | nfitg | |
14 | nfcv | |
|
15 | fveq2 | |
|
16 | nfcv | |
|
17 | nfmpt1 | |
|
18 | 16 17 | nfmpt | |
19 | nfcv | |
|
20 | 18 19 | nffv | |
21 | nfcv | |
|
22 | 20 21 | nffv | |
23 | nfcv | |
|
24 | 15 22 23 | cbvitg | |
25 | fveq2 | |
|
26 | 25 | fveq1d | |
27 | 26 | adantr | |
28 | 27 | itgeq2dv | |
29 | 24 28 | eqtrid | |
30 | 13 14 29 | cbvmpt | |
31 | simplr | |
|
32 | ulmscl | |
|
33 | mptexg | |
|
34 | 4 32 33 | 3syl | |
35 | 34 | ad2antrr | |
36 | eqid | |
|
37 | 36 | fvmpt2 | |
38 | 31 35 37 | syl2anc | |
39 | 38 | fveq1d | |
40 | simpr | |
|
41 | 34 | ralrimivw | |
42 | 36 | fnmpt | |
43 | 41 42 | syl | |
44 | ulmf2 | |
|
45 | 43 4 44 | syl2anc | |
46 | 45 | fvmptelcdm | |
47 | elmapi | |
|
48 | 46 47 | syl | |
49 | 48 | fvmptelcdm | |
50 | eqid | |
|
51 | 50 | fvmpt2 | |
52 | 40 49 51 | syl2anc | |
53 | 39 52 | eqtrd | |
54 | 53 | itgeq2dv | |
55 | 54 | mpteq2dva | |
56 | 30 55 | eqtrid | |
57 | fveq2 | |
|
58 | nffvmpt1 | |
|
59 | nfcv | |
|
60 | 57 58 59 | cbvitg | |
61 | simpr | |
|
62 | ulmcl | |
|
63 | 4 62 | syl | |
64 | 63 | fvmptelcdm | |
65 | eqid | |
|
66 | 65 | fvmpt2 | |
67 | 61 64 66 | syl2anc | |
68 | 67 | itgeq2dv | |
69 | 60 68 | eqtrid | |
70 | 8 56 69 | 3brtr3d | |
71 | 7 70 | jca | |