| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mtest.z |
|
| 2 |
|
mtest.n |
|
| 3 |
|
mtest.s |
|
| 4 |
|
mtest.f |
|
| 5 |
|
mtest.m |
|
| 6 |
|
mtest.c |
|
| 7 |
|
mtest.l |
|
| 8 |
|
mtest.d |
|
| 9 |
1
|
climcau |
|
| 10 |
2 8 9
|
syl2anc |
|
| 11 |
|
seqfn |
|
| 12 |
2 11
|
syl |
|
| 13 |
1
|
fneq2i |
|
| 14 |
12 13
|
sylibr |
|
| 15 |
3
|
elexd |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
17 1
|
eleqtrdi |
|
| 19 |
4
|
adantr |
|
| 20 |
|
elfzuz |
|
| 21 |
20 1
|
eleqtrrdi |
|
| 22 |
|
ffvelcdm |
|
| 23 |
19 21 22
|
syl2an |
|
| 24 |
|
elmapi |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
feqmptd |
|
| 27 |
21
|
adantl |
|
| 28 |
|
fveq2 |
|
| 29 |
28
|
fveq1d |
|
| 30 |
|
eqid |
|
| 31 |
|
fvex |
|
| 32 |
29 30 31
|
fvmpt |
|
| 33 |
27 32
|
syl |
|
| 34 |
33
|
mpteq2dv |
|
| 35 |
26 34
|
eqtr4d |
|
| 36 |
16 18 35
|
seqof |
|
| 37 |
2
|
adantr |
|
| 38 |
4
|
ffvelcdmda |
|
| 39 |
|
elmapi |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
ffvelcdmda |
|
| 42 |
41
|
an32s |
|
| 43 |
42
|
fmpttd |
|
| 44 |
43
|
ffvelcdmda |
|
| 45 |
1 37 44
|
serf |
|
| 46 |
45
|
ffvelcdmda |
|
| 47 |
46
|
an32s |
|
| 48 |
47
|
fmpttd |
|
| 49 |
|
cnex |
|
| 50 |
|
elmapg |
|
| 51 |
49 16 50
|
sylancr |
|
| 52 |
48 51
|
mpbird |
|
| 53 |
36 52
|
eqeltrd |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
|
ffnfv |
|
| 56 |
14 54 55
|
sylanbrc |
|
| 57 |
56
|
ad2antrr |
|
| 58 |
1
|
uztrn2 |
|
| 59 |
58
|
adantl |
|
| 60 |
57 59
|
ffvelcdmd |
|
| 61 |
|
elmapi |
|
| 62 |
60 61
|
syl |
|
| 63 |
62
|
ffvelcdmda |
|
| 64 |
|
simprl |
|
| 65 |
57 64
|
ffvelcdmd |
|
| 66 |
|
elmapi |
|
| 67 |
65 66
|
syl |
|
| 68 |
67
|
ffvelcdmda |
|
| 69 |
63 68
|
subcld |
|
| 70 |
69
|
abscld |
|
| 71 |
|
fzfid |
|
| 72 |
|
ssun2 |
|
| 73 |
64 1
|
eleqtrdi |
|
| 74 |
|
simprr |
|
| 75 |
|
elfzuzb |
|
| 76 |
73 74 75
|
sylanbrc |
|
| 77 |
|
fzsplit |
|
| 78 |
76 77
|
syl |
|
| 79 |
72 78
|
sseqtrrid |
|
| 80 |
79
|
sselda |
|
| 81 |
80
|
adantlr |
|
| 82 |
4
|
ad2antrr |
|
| 83 |
82 21 22
|
syl2an |
|
| 84 |
83 24
|
syl |
|
| 85 |
84
|
ffvelcdmda |
|
| 86 |
85
|
an32s |
|
| 87 |
81 86
|
syldan |
|
| 88 |
87
|
abscld |
|
| 89 |
71 88
|
fsumrecl |
|
| 90 |
1 2 6
|
serfre |
|
| 91 |
90
|
ad2antrr |
|
| 92 |
91 59
|
ffvelcdmd |
|
| 93 |
91 64
|
ffvelcdmd |
|
| 94 |
92 93
|
resubcld |
|
| 95 |
94
|
recnd |
|
| 96 |
95
|
abscld |
|
| 97 |
96
|
adantr |
|
| 98 |
58 36
|
sylan2 |
|
| 99 |
98
|
adantlr |
|
| 100 |
99
|
fveq1d |
|
| 101 |
|
fvex |
|
| 102 |
|
eqid |
|
| 103 |
102
|
fvmpt2 |
|
| 104 |
101 103
|
mpan2 |
|
| 105 |
100 104
|
sylan9eq |
|
| 106 |
|
fveq2 |
|
| 107 |
|
fveq2 |
|
| 108 |
107
|
mpteq2dv |
|
| 109 |
106 108
|
eqeq12d |
|
| 110 |
36
|
ralrimiva |
|
| 111 |
110
|
ad2antrr |
|
| 112 |
109 111 64
|
rspcdva |
|
| 113 |
112
|
fveq1d |
|
| 114 |
|
fvex |
|
| 115 |
|
eqid |
|
| 116 |
115
|
fvmpt2 |
|
| 117 |
114 116
|
mpan2 |
|
| 118 |
113 117
|
sylan9eq |
|
| 119 |
105 118
|
oveq12d |
|
| 120 |
21
|
adantl |
|
| 121 |
120 32
|
syl |
|
| 122 |
59
|
adantr |
|
| 123 |
122 1
|
eleqtrdi |
|
| 124 |
121 123 86
|
fsumser |
|
| 125 |
|
elfzuz |
|
| 126 |
125 1
|
eleqtrrdi |
|
| 127 |
126
|
adantl |
|
| 128 |
127 32
|
syl |
|
| 129 |
64
|
adantr |
|
| 130 |
129 1
|
eleqtrdi |
|
| 131 |
82 126 22
|
syl2an |
|
| 132 |
131 24
|
syl |
|
| 133 |
132
|
ffvelcdmda |
|
| 134 |
133
|
an32s |
|
| 135 |
128 130 134
|
fsumser |
|
| 136 |
124 135
|
oveq12d |
|
| 137 |
|
fzfid |
|
| 138 |
137 134
|
fsumcl |
|
| 139 |
71 87
|
fsumcl |
|
| 140 |
|
eluzelre |
|
| 141 |
73 140
|
syl |
|
| 142 |
141
|
ltp1d |
|
| 143 |
|
fzdisj |
|
| 144 |
142 143
|
syl |
|
| 145 |
144
|
adantr |
|
| 146 |
78
|
adantr |
|
| 147 |
|
fzfid |
|
| 148 |
145 146 147 86
|
fsumsplit |
|
| 149 |
138 139 148
|
mvrladdd |
|
| 150 |
119 136 149
|
3eqtr2d |
|
| 151 |
150
|
fveq2d |
|
| 152 |
71 87
|
fsumabs |
|
| 153 |
151 152
|
eqbrtrd |
|
| 154 |
|
simpll |
|
| 155 |
154 21 6
|
syl2an |
|
| 156 |
80 155
|
syldan |
|
| 157 |
156
|
adantlr |
|
| 158 |
81 21
|
syl |
|
| 159 |
7
|
ad4ant14 |
|
| 160 |
159
|
anass1rs |
|
| 161 |
158 160
|
syldan |
|
| 162 |
71 88 157 161
|
fsumle |
|
| 163 |
|
eqidd |
|
| 164 |
59 1
|
eleqtrdi |
|
| 165 |
155
|
recnd |
|
| 166 |
163 164 165
|
fsumser |
|
| 167 |
|
eqidd |
|
| 168 |
154 126 6
|
syl2an |
|
| 169 |
168
|
recnd |
|
| 170 |
167 73 169
|
fsumser |
|
| 171 |
166 170
|
oveq12d |
|
| 172 |
|
fzfid |
|
| 173 |
172 169
|
fsumcl |
|
| 174 |
|
fzfid |
|
| 175 |
80 165
|
syldan |
|
| 176 |
174 175
|
fsumcl |
|
| 177 |
|
fzfid |
|
| 178 |
144 78 177 165
|
fsumsplit |
|
| 179 |
173 176 178
|
mvrladdd |
|
| 180 |
171 179
|
eqtr3d |
|
| 181 |
180
|
fveq2d |
|
| 182 |
181
|
adantr |
|
| 183 |
180 94
|
eqeltrrd |
|
| 184 |
183
|
adantr |
|
| 185 |
|
0red |
|
| 186 |
87
|
absge0d |
|
| 187 |
185 88 157 186 161
|
letrd |
|
| 188 |
71 157 187
|
fsumge0 |
|
| 189 |
184 188
|
absidd |
|
| 190 |
182 189
|
eqtrd |
|
| 191 |
162 190
|
breqtrrd |
|
| 192 |
70 89 97 153 191
|
letrd |
|
| 193 |
|
simpllr |
|
| 194 |
193
|
rpred |
|
| 195 |
|
lelttr |
|
| 196 |
70 97 194 195
|
syl3anc |
|
| 197 |
192 196
|
mpand |
|
| 198 |
197
|
ralrimdva |
|
| 199 |
198
|
anassrs |
|
| 200 |
199
|
ralimdva |
|
| 201 |
200
|
reximdva |
|
| 202 |
201
|
ralimdva |
|
| 203 |
10 202
|
mpd |
|
| 204 |
1 2 3 56
|
ulmcau |
|
| 205 |
203 204
|
mpbird |
|