Metamath Proof Explorer


Theorem ulmcau

Description: A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < x there is a j such that for all j <_ k the functions F ( k ) and F ( j ) are uniformly within x of each other on S . This is the four-quantifier version, see ulmcau2 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses ulmcau.z Z=M
ulmcau.m φM
ulmcau.s φSV
ulmcau.f φF:ZS
Assertion ulmcau φFdomuSx+jZkjzSFkzFjz<x

Proof

Step Hyp Ref Expression
1 ulmcau.z Z=M
2 ulmcau.m φM
3 ulmcau.s φSV
4 ulmcau.f φF:ZS
5 eldmg FdomuSFdomuSgFuSg
6 5 ibi FdomuSgFuSg
7 2 ad2antrr φFuSgx+M
8 4 ad2antrr φFuSgx+F:ZS
9 eqidd φFuSgx+kZzSFkz=Fkz
10 eqidd φFuSgx+zSgz=gz
11 simplr φFuSgx+FuSg
12 rphalfcl x+x2+
13 12 adantl φFuSgx+x2+
14 1 7 8 9 10 11 13 ulmi φFuSgx+jZkjzSFkzgz<x2
15 simpr φFuSgx+jZjZ
16 15 1 eleqtrdi φFuSgx+jZjM
17 eluzelz jMj
18 uzid jjj
19 fveq2 k=jFk=Fj
20 19 fveq1d k=jFkz=Fjz
21 20 fvoveq1d k=jFkzgz=Fjzgz
22 21 breq1d k=jFkzgz<x2Fjzgz<x2
23 22 ralbidv k=jzSFkzgz<x2zSFjzgz<x2
24 23 rspcv jjkjzSFkzgz<x2zSFjzgz<x2
25 16 17 18 24 4syl φFuSgx+jZkjzSFkzgz<x2zSFjzgz<x2
26 r19.26 zSFjzgz<x2Fkzgz<x2zSFjzgz<x2zSFkzgz<x2
27 8 ffvelcdmda φFuSgx+jZFjS
28 27 adantr φFuSgx+jZkjFjS
29 elmapi FjSFj:S
30 28 29 syl φFuSgx+jZkjFj:S
31 30 ffvelcdmda φFuSgx+jZkjzSFjz
32 ulmcl FuSgg:S
33 32 ad4antlr φFuSgx+jZkjg:S
34 33 ffvelcdmda φFuSgx+jZkjzSgz
35 31 34 abssubd φFuSgx+jZkjzSFjzgz=gzFjz
36 35 breq1d φFuSgx+jZkjzSFjzgz<x2gzFjz<x2
37 36 biimpd φFuSgx+jZkjzSFjzgz<x2gzFjz<x2
38 1 uztrn2 jZkjkZ
39 ffvelcdm F:ZSkZFkS
40 8 38 39 syl2an φFuSgx+jZkjFkS
41 40 anassrs φFuSgx+jZkjFkS
42 elmapi FkSFk:S
43 41 42 syl φFuSgx+jZkjFk:S
44 43 ffvelcdmda φFuSgx+jZkjzSFkz
45 rpre x+x
46 45 ad4antlr φFuSgx+jZkjzSx
47 abs3lem FkzFjzgzxFkzgz<x2gzFjz<x2FkzFjz<x
48 44 31 34 46 47 syl22anc φFuSgx+jZkjzSFkzgz<x2gzFjz<x2FkzFjz<x
49 37 48 sylan2d φFuSgx+jZkjzSFkzgz<x2Fjzgz<x2FkzFjz<x
50 49 ancomsd φFuSgx+jZkjzSFjzgz<x2Fkzgz<x2FkzFjz<x
51 50 ralimdva φFuSgx+jZkjzSFjzgz<x2Fkzgz<x2zSFkzFjz<x
52 26 51 biimtrrid φFuSgx+jZkjzSFjzgz<x2zSFkzgz<x2zSFkzFjz<x
53 52 expdimp φFuSgx+jZkjzSFjzgz<x2zSFkzgz<x2zSFkzFjz<x
54 53 an32s φFuSgx+jZzSFjzgz<x2kjzSFkzgz<x2zSFkzFjz<x
55 54 ralimdva φFuSgx+jZzSFjzgz<x2kjzSFkzgz<x2kjzSFkzFjz<x
56 55 ex φFuSgx+jZzSFjzgz<x2kjzSFkzgz<x2kjzSFkzFjz<x
57 56 com23 φFuSgx+jZkjzSFkzgz<x2zSFjzgz<x2kjzSFkzFjz<x
58 25 57 mpdd φFuSgx+jZkjzSFkzgz<x2kjzSFkzFjz<x
59 58 reximdva φFuSgx+jZkjzSFkzgz<x2jZkjzSFkzFjz<x
60 14 59 mpd φFuSgx+jZkjzSFkzFjz<x
61 60 ralrimiva φFuSgx+jZkjzSFkzFjz<x
62 61 ex φFuSgx+jZkjzSFkzFjz<x
63 62 exlimdv φgFuSgx+jZkjzSFkzFjz<x
64 6 63 syl5 φFdomuSx+jZkjzSFkzFjz<x
65 ulmrel ReluS
66 1 2 3 4 ulmcaulem φx+jZkjzSFkzFjz<xx+jZkjmkzSFkzFmz<x
67 66 biimpa φx+jZkjzSFkzFjz<xx+jZkjmkzSFkzFmz<x
68 rphalfcl r+r2+
69 breq2 x=r2FkzFmz<xFkzFmz<r2
70 69 ralbidv x=r2zSFkzFmz<xzSFkzFmz<r2
71 70 2ralbidv x=r2kjmkzSFkzFmz<xkjmkzSFkzFmz<r2
72 71 rexbidv x=r2jZkjmkzSFkzFmz<xjZkjmkzSFkzFmz<r2
73 ralcom wSmqFqwFmw<r2mqwSFqwFmw<r2
74 fveq2 q=kq=k
75 fveq2 w=zFqw=Fqz
76 fveq2 w=zFmw=Fmz
77 75 76 oveq12d w=zFqwFmw=FqzFmz
78 77 fveq2d w=zFqwFmw=FqzFmz
79 78 breq1d w=zFqwFmw<r2FqzFmz<r2
80 79 cbvralvw wSFqwFmw<r2zSFqzFmz<r2
81 fveq2 q=kFq=Fk
82 81 fveq1d q=kFqz=Fkz
83 82 fvoveq1d q=kFqzFmz=FkzFmz
84 83 breq1d q=kFqzFmz<r2FkzFmz<r2
85 84 ralbidv q=kzSFqzFmz<r2zSFkzFmz<r2
86 80 85 bitrid q=kwSFqwFmw<r2zSFkzFmz<r2
87 74 86 raleqbidv q=kmqwSFqwFmw<r2mkzSFkzFmz<r2
88 73 87 bitrid q=kwSmqFqwFmw<r2mkzSFkzFmz<r2
89 88 cbvralvw qpwSmqFqwFmw<r2kpmkzSFkzFmz<r2
90 fveq2 p=jp=j
91 90 raleqdv p=jkpmkzSFkzFmz<r2kjmkzSFkzFmz<r2
92 89 91 bitrid p=jqpwSmqFqwFmw<r2kjmkzSFkzFmz<r2
93 92 cbvrexvw pZqpwSmqFqwFmw<r2jZkjmkzSFkzFmz<r2
94 72 93 bitr4di x=r2jZkjmkzSFkzFmz<xpZqpwSmqFqwFmw<r2
95 94 rspccva x+jZkjmkzSFkzFmz<xr2+pZqpwSmqFqwFmw<r2
96 67 68 95 syl2an φx+jZkjzSFkzFjz<xr+pZqpwSmqFqwFmw<r2
97 1 uztrn2 pZqpqZ
98 eqid q=q
99 eluzelz qMq
100 99 1 eleq2s qZq
101 100 ad2antlr φx+jZkjzSFkzFjz<xr+qZwSq
102 68 adantl φx+jZkjzSFkzFjz<xr+r2+
103 102 ad2antrr φx+jZkjzSFkzFjz<xr+qZwSr2+
104 simplr φx+jZkjzSFkzFjz<xr+qZwSqZ
105 1 uztrn2 qZmqmZ
106 104 105 sylan φx+jZkjzSFkzFjz<xr+qZwSmqmZ
107 fveq2 n=mFn=Fm
108 107 fveq1d n=mFnw=Fmw
109 eqid nZFnw=nZFnw
110 fvex FmwV
111 108 109 110 fvmpt mZnZFnwm=Fmw
112 106 111 syl φx+jZkjzSFkzFjz<xr+qZwSmqnZFnwm=Fmw
113 4 adantr φx+jZkjzSFkzFjz<xF:ZS
114 113 ffvelcdmda φx+jZkjzSFkzFjz<xnZFnS
115 elmapi FnSFn:S
116 114 115 syl φx+jZkjzSFkzFjz<xnZFn:S
117 116 ffvelcdmda φx+jZkjzSFkzFjz<xnZySFny
118 117 an32s φx+jZkjzSFkzFjz<xySnZFny
119 118 fmpttd φx+jZkjzSFkzFjz<xySnZFny:Z
120 119 ffvelcdmda φx+jZkjzSFkzFjz<xySqZnZFnyq
121 fveq2 z=yFkz=Fky
122 fveq2 z=yFjz=Fjy
123 121 122 oveq12d z=yFkzFjz=FkyFjy
124 123 fveq2d z=yFkzFjz=FkyFjy
125 124 breq1d z=yFkzFjz<xFkyFjy<x
126 125 rspcv ySzSFkzFjz<xFkyFjy<x
127 126 ralimdv ySkjzSFkzFjz<xkjFkyFjy<x
128 127 reximdv ySjZkjzSFkzFjz<xjZkjFkyFjy<x
129 128 ralimdv ySx+jZkjzSFkzFjz<xx+jZkjFkyFjy<x
130 129 impcom x+jZkjzSFkzFjz<xySx+jZkjFkyFjy<x
131 130 adantll φx+jZkjzSFkzFjz<xySx+jZkjFkyFjy<x
132 fveq2 q=knZFnyq=nZFnyk
133 132 fvoveq1d q=knZFnyqnZFnyp=nZFnyknZFnyp
134 133 breq1d q=knZFnyqnZFnyp<rnZFnyknZFnyp<r
135 134 cbvralvw qpnZFnyqnZFnyp<rkpnZFnyknZFnyp<r
136 fveq2 p=jnZFnyp=nZFnyj
137 136 oveq2d p=jnZFnyknZFnyp=nZFnyknZFnyj
138 137 fveq2d p=jnZFnyknZFnyp=nZFnyknZFnyj
139 138 breq1d p=jnZFnyknZFnyp<rnZFnyknZFnyj<r
140 90 139 raleqbidv p=jkpnZFnyknZFnyp<rkjnZFnyknZFnyj<r
141 135 140 bitrid p=jqpnZFnyqnZFnyp<rkjnZFnyknZFnyj<r
142 141 cbvrexvw pZqpnZFnyqnZFnyp<rjZkjnZFnyknZFnyj<r
143 fveq2 n=kFn=Fk
144 143 fveq1d n=kFny=Fky
145 eqid nZFny=nZFny
146 fvex FkyV
147 144 145 146 fvmpt kZnZFnyk=Fky
148 38 147 syl jZkjnZFnyk=Fky
149 fveq2 n=jFn=Fj
150 149 fveq1d n=jFny=Fjy
151 fvex FjyV
152 150 145 151 fvmpt jZnZFnyj=Fjy
153 152 adantr jZkjnZFnyj=Fjy
154 148 153 oveq12d jZkjnZFnyknZFnyj=FkyFjy
155 154 fveq2d jZkjnZFnyknZFnyj=FkyFjy
156 155 breq1d jZkjnZFnyknZFnyj<rFkyFjy<r
157 156 ralbidva jZkjnZFnyknZFnyj<rkjFkyFjy<r
158 157 rexbiia jZkjnZFnyknZFnyj<rjZkjFkyFjy<r
159 142 158 bitri pZqpnZFnyqnZFnyp<rjZkjFkyFjy<r
160 breq2 r=xFkyFjy<rFkyFjy<x
161 160 ralbidv r=xkjFkyFjy<rkjFkyFjy<x
162 161 rexbidv r=xjZkjFkyFjy<rjZkjFkyFjy<x
163 159 162 bitrid r=xpZqpnZFnyqnZFnyp<rjZkjFkyFjy<x
164 163 cbvralvw r+pZqpnZFnyqnZFnyp<rx+jZkjFkyFjy<x
165 131 164 sylibr φx+jZkjzSFkzFjz<xySr+pZqpnZFnyqnZFnyp<r
166 1 fvexi ZV
167 166 mptex nZFnyV
168 167 a1i φx+jZkjzSFkzFjz<xySnZFnyV
169 1 120 165 168 caucvg φx+jZkjzSFkzFjz<xySnZFnydom
170 169 ralrimiva φx+jZkjzSFkzFjz<xySnZFnydom
171 170 ad2antrr φx+jZkjzSFkzFjz<xr+qZySnZFnydom
172 fveq2 y=wFny=Fnw
173 172 mpteq2dv y=wnZFny=nZFnw
174 173 eleq1d y=wnZFnydomnZFnwdom
175 174 rspccva ySnZFnydomwSnZFnwdom
176 171 175 sylan φx+jZkjzSFkzFjz<xr+qZwSnZFnwdom
177 climdm nZFnwdomnZFnwnZFnw
178 176 177 sylib φx+jZkjzSFkzFjz<xr+qZwSnZFnwnZFnw
179 98 101 103 112 178 climi2 φx+jZkjzSFkzFjz<xr+qZwSvqmvFmwnZFnw<r2
180 98 r19.29uz mqFqwFmw<r2vqmvFmwnZFnw<r2vqmvFqwFmw<r2FmwnZFnw<r2
181 98 r19.2uz vqmvFqwFmw<r2FmwnZFnw<r2mqFqwFmw<r2FmwnZFnw<r2
182 180 181 syl mqFqwFmw<r2vqmvFmwnZFnw<r2mqFqwFmw<r2FmwnZFnw<r2
183 4 ad2antrr φx+jZkjzSFkzFjz<xr+F:ZS
184 183 ffvelcdmda φx+jZkjzSFkzFjz<xr+qZFqS
185 elmapi FqSFq:S
186 184 185 syl φx+jZkjzSFkzFjz<xr+qZFq:S
187 186 ffvelcdmda φx+jZkjzSFkzFjz<xr+qZwSFqw
188 187 adantr φx+jZkjzSFkzFjz<xr+qZwSmqFqw
189 climcl nZFnwnZFnwnZFnw
190 178 189 syl φx+jZkjzSFkzFjz<xr+qZwSnZFnw
191 190 adantr φx+jZkjzSFkzFjz<xr+qZwSmqnZFnw
192 4 ad5antr φx+jZkjzSFkzFjz<xr+qZwSmqF:ZS
193 192 106 ffvelcdmd φx+jZkjzSFkzFjz<xr+qZwSmqFmS
194 elmapi FmSFm:S
195 193 194 syl φx+jZkjzSFkzFjz<xr+qZwSmqFm:S
196 simplr φx+jZkjzSFkzFjz<xr+qZwSmqwS
197 195 196 ffvelcdmd φx+jZkjzSFkzFjz<xr+qZwSmqFmw
198 rpre r+r
199 198 ad4antlr φx+jZkjzSFkzFjz<xr+qZwSmqr
200 abs3lem FqwnZFnwFmwrFqwFmw<r2FmwnZFnw<r2FqwnZFnw<r
201 188 191 197 199 200 syl22anc φx+jZkjzSFkzFjz<xr+qZwSmqFqwFmw<r2FmwnZFnw<r2FqwnZFnw<r
202 201 rexlimdva φx+jZkjzSFkzFjz<xr+qZwSmqFqwFmw<r2FmwnZFnw<r2FqwnZFnw<r
203 182 202 syl5 φx+jZkjzSFkzFjz<xr+qZwSmqFqwFmw<r2vqmvFmwnZFnw<r2FqwnZFnw<r
204 179 203 mpan2d φx+jZkjzSFkzFjz<xr+qZwSmqFqwFmw<r2FqwnZFnw<r
205 204 ralimdva φx+jZkjzSFkzFjz<xr+qZwSmqFqwFmw<r2wSFqwnZFnw<r
206 97 205 sylan2 φx+jZkjzSFkzFjz<xr+pZqpwSmqFqwFmw<r2wSFqwnZFnw<r
207 206 anassrs φx+jZkjzSFkzFjz<xr+pZqpwSmqFqwFmw<r2wSFqwnZFnw<r
208 207 ralimdva φx+jZkjzSFkzFjz<xr+pZqpwSmqFqwFmw<r2qpwSFqwnZFnw<r
209 208 reximdva φx+jZkjzSFkzFjz<xr+pZqpwSmqFqwFmw<r2pZqpwSFqwnZFnw<r
210 96 209 mpd φx+jZkjzSFkzFjz<xr+pZqpwSFqwnZFnw<r
211 210 ralrimiva φx+jZkjzSFkzFjz<xr+pZqpwSFqwnZFnw<r
212 2 adantr φx+jZkjzSFkzFjz<xM
213 eqidd φx+jZkjzSFkzFjz<xqZwSFqw=Fqw
214 173 fveq2d y=wnZFny=nZFnw
215 eqid ySnZFny=ySnZFny
216 fvex nZFnwV
217 214 215 216 fvmpt wSySnZFnyw=nZFnw
218 217 adantl φx+jZkjzSFkzFjz<xwSySnZFnyw=nZFnw
219 climdm nZFnydomnZFnynZFny
220 169 219 sylib φx+jZkjzSFkzFjz<xySnZFnynZFny
221 climcl nZFnynZFnynZFny
222 220 221 syl φx+jZkjzSFkzFjz<xySnZFny
223 222 fmpttd φx+jZkjzSFkzFjz<xySnZFny:S
224 3 adantr φx+jZkjzSFkzFjz<xSV
225 1 212 113 213 218 223 224 ulm2 φx+jZkjzSFkzFjz<xFuSySnZFnyr+pZqpwSFqwnZFnw<r
226 211 225 mpbird φx+jZkjzSFkzFjz<xFuSySnZFny
227 releldm ReluSFuSySnZFnyFdomuS
228 65 226 227 sylancr φx+jZkjzSFkzFjz<xFdomuS
229 228 ex φx+jZkjzSFkzFjz<xFdomuS
230 64 229 impbid φFdomuSx+jZkjzSFkzFjz<x