| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulmcau.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
ulmcau.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
ulmcau.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 4 |
|
ulmcau.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 5 |
|
eldmg |
⊢ ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∃ 𝑔 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ) |
| 6 |
5
|
ibi |
⊢ ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ∃ 𝑔 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) |
| 7 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 8 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 9 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 10 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑔 ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
| 11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) |
| 12 |
|
rphalfcl |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 14 |
1 7 8 9 10 11 13
|
ulmi |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) |
| 15 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
| 16 |
15 1
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 17 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
| 18 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 20 |
19
|
fveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) |
| 21 |
20
|
fvoveq1d |
⊢ ( 𝑘 = 𝑗 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 22 |
21
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 23 |
22
|
ralbidv |
⊢ ( 𝑘 = 𝑗 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 24 |
23
|
rspcv |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 25 |
16 17 18 24
|
4syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 26 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ↔ ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 27 |
8
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 29 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 30 |
28 29
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 31 |
30
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) |
| 32 |
|
ulmcl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 → 𝑔 : 𝑆 ⟶ ℂ ) |
| 33 |
32
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑔 : 𝑆 ⟶ ℂ ) |
| 34 |
33
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑔 ‘ 𝑧 ) ∈ ℂ ) |
| 35 |
31 34
|
abssubd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ) |
| 36 |
35
|
breq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 37 |
36
|
biimpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 38 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 39 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 40 |
8 38 39
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 41 |
40
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 42 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 43 |
41 42
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 44 |
43
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 45 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 46 |
45
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ℝ ) |
| 47 |
|
abs3lem |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) ∧ ( ( 𝑔 ‘ 𝑧 ) ∈ ℂ ∧ 𝑥 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 48 |
44 31 34 46 47
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 49 |
37 48
|
sylan2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 50 |
49
|
ancomsd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 51 |
50
|
ralimdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 52 |
26 51
|
biimtrrid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 53 |
52
|
expdimp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 54 |
53
|
an32s |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 55 |
54
|
ralimdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 56 |
55
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 57 |
56
|
com23 |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 58 |
25 57
|
mpdd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 59 |
58
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 60 |
14 59
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
| 61 |
60
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
| 62 |
61
|
ex |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 63 |
62
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 64 |
6 63
|
syl5 |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 65 |
|
ulmrel |
⊢ Rel ( ⇝𝑢 ‘ 𝑆 ) |
| 66 |
1 2 3 4
|
ulmcaulem |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 67 |
66
|
biimpa |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
| 68 |
|
rphalfcl |
⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 69 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 70 |
69
|
ralbidv |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 71 |
70
|
2ralbidv |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 72 |
71
|
rexbidv |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 73 |
|
ralcom |
⊢ ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) |
| 74 |
|
fveq2 |
⊢ ( 𝑞 = 𝑘 → ( ℤ≥ ‘ 𝑞 ) = ( ℤ≥ ‘ 𝑘 ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) ) |
| 76 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 77 |
75 76
|
oveq12d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) = ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
| 78 |
77
|
fveq2d |
⊢ ( 𝑤 = 𝑧 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 79 |
78
|
breq1d |
⊢ ( 𝑤 = 𝑧 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 80 |
79
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) |
| 81 |
|
fveq2 |
⊢ ( 𝑞 = 𝑘 → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 82 |
81
|
fveq1d |
⊢ ( 𝑞 = 𝑘 → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 83 |
82
|
fvoveq1d |
⊢ ( 𝑞 = 𝑘 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 84 |
83
|
breq1d |
⊢ ( 𝑞 = 𝑘 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 85 |
84
|
ralbidv |
⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 86 |
80 85
|
bitrid |
⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 87 |
74 86
|
raleqbidv |
⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 88 |
73 87
|
bitrid |
⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 89 |
88
|
cbvralvw |
⊢ ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) |
| 90 |
|
fveq2 |
⊢ ( 𝑝 = 𝑗 → ( ℤ≥ ‘ 𝑝 ) = ( ℤ≥ ‘ 𝑗 ) ) |
| 91 |
90
|
raleqdv |
⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 92 |
89 91
|
bitrid |
⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 93 |
92
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) |
| 94 |
72 93
|
bitr4di |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 95 |
94
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) |
| 96 |
67 68 95
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) |
| 97 |
1
|
uztrn2 |
⊢ ( ( 𝑝 ∈ 𝑍 ∧ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 𝑞 ∈ 𝑍 ) |
| 98 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑞 ) = ( ℤ≥ ‘ 𝑞 ) |
| 99 |
|
eluzelz |
⊢ ( 𝑞 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑞 ∈ ℤ ) |
| 100 |
99 1
|
eleq2s |
⊢ ( 𝑞 ∈ 𝑍 → 𝑞 ∈ ℤ ) |
| 101 |
100
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑞 ∈ ℤ ) |
| 102 |
68
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 103 |
102
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 104 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑞 ∈ 𝑍 ) |
| 105 |
1
|
uztrn2 |
⊢ ( ( 𝑞 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑚 ∈ 𝑍 ) |
| 106 |
104 105
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑚 ∈ 𝑍 ) |
| 107 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 108 |
107
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 109 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) |
| 110 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ∈ V |
| 111 |
108 109 110
|
fvmpt |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 112 |
106 111
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 113 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 114 |
113
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 115 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
| 116 |
114 115
|
syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
| 117 |
116
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
| 118 |
117
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
| 119 |
118
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) : 𝑍 ⟶ ℂ ) |
| 120 |
119
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑞 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) ∈ ℂ ) |
| 121 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 122 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
| 123 |
121 122
|
oveq12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) |
| 124 |
123
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) |
| 125 |
124
|
breq1d |
⊢ ( 𝑧 = 𝑦 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 126 |
125
|
rspcv |
⊢ ( 𝑦 ∈ 𝑆 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 127 |
126
|
ralimdv |
⊢ ( 𝑦 ∈ 𝑆 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 128 |
127
|
reximdv |
⊢ ( 𝑦 ∈ 𝑆 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 129 |
128
|
ralimdv |
⊢ ( 𝑦 ∈ 𝑆 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 130 |
129
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) |
| 131 |
130
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) |
| 132 |
|
fveq2 |
⊢ ( 𝑞 = 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ) |
| 133 |
132
|
fvoveq1d |
⊢ ( 𝑞 = 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) = ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) ) |
| 134 |
133
|
breq1d |
⊢ ( 𝑞 = 𝑘 → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ) ) |
| 135 |
134
|
cbvralvw |
⊢ ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ) |
| 136 |
|
fveq2 |
⊢ ( 𝑝 = 𝑗 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) |
| 137 |
136
|
oveq2d |
⊢ ( 𝑝 = 𝑗 → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) = ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) |
| 138 |
137
|
fveq2d |
⊢ ( 𝑝 = 𝑗 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) = ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ) |
| 139 |
138
|
breq1d |
⊢ ( 𝑝 = 𝑗 → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) ) |
| 140 |
90 139
|
raleqbidv |
⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) ) |
| 141 |
135 140
|
bitrid |
⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) ) |
| 142 |
141
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) |
| 143 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 144 |
143
|
fveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 145 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) |
| 146 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ∈ V |
| 147 |
144 145 146
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 148 |
38 147
|
syl |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 149 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 150 |
149
|
fveq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
| 151 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ∈ V |
| 152 |
150 145 151
|
fvmpt |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
| 153 |
152
|
adantr |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
| 154 |
148 153
|
oveq12d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) |
| 155 |
154
|
fveq2d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) |
| 156 |
155
|
breq1d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) ) |
| 157 |
156
|
ralbidva |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) ) |
| 158 |
157
|
rexbiia |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) |
| 159 |
142 158
|
bitri |
⊢ ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) |
| 160 |
|
breq2 |
⊢ ( 𝑟 = 𝑥 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 161 |
160
|
ralbidv |
⊢ ( 𝑟 = 𝑥 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 162 |
161
|
rexbidv |
⊢ ( 𝑟 = 𝑥 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 163 |
159 162
|
bitrid |
⊢ ( 𝑟 = 𝑥 → ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 164 |
163
|
cbvralvw |
⊢ ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) |
| 165 |
131 164
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ) |
| 166 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
| 167 |
166
|
mptex |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ V |
| 168 |
167
|
a1i |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ V ) |
| 169 |
1 120 165 168
|
caucvg |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 170 |
169
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 171 |
170
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 172 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) |
| 173 |
172
|
mpteq2dv |
⊢ ( 𝑦 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
| 174 |
173
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) ) |
| 175 |
174
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ∧ 𝑤 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) |
| 176 |
171 175
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) |
| 177 |
|
climdm |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
| 178 |
176 177
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
| 179 |
98 101 103 112 178
|
climi2 |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) |
| 180 |
98
|
r19.29uz |
⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) ) |
| 181 |
98
|
r19.2uz |
⊢ ( ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) ) |
| 182 |
180 181
|
syl |
⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) ) |
| 183 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 184 |
183
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑞 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 185 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑞 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑞 ) : 𝑆 ⟶ ℂ ) |
| 186 |
184 185
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑞 ) : 𝑆 ⟶ ℂ ) |
| 187 |
186
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ∈ ℂ ) |
| 188 |
187
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ∈ ℂ ) |
| 189 |
|
climcl |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) |
| 190 |
178 189
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) |
| 191 |
190
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) |
| 192 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 193 |
192 106
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 194 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑚 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑚 ) : 𝑆 ⟶ ℂ ) |
| 195 |
193 194
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑚 ) : 𝑆 ⟶ ℂ ) |
| 196 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑤 ∈ 𝑆 ) |
| 197 |
195 196
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ∈ ℂ ) |
| 198 |
|
rpre |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) |
| 199 |
198
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑟 ∈ ℝ ) |
| 200 |
|
abs3lem |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ∈ ℂ ∧ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) ∧ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ∈ ℂ ∧ 𝑟 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 201 |
188 191 197 199 200
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 202 |
201
|
rexlimdva |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 203 |
182 202
|
syl5 |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 204 |
179 203
|
mpan2d |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 205 |
204
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 206 |
97 205
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑝 ∈ 𝑍 ∧ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ) ) → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 207 |
206
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑍 ) ∧ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ) → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 208 |
207
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑍 ) → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 209 |
208
|
reximdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 210 |
96 209
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) |
| 211 |
210
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) |
| 212 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝑀 ∈ ℤ ) |
| 213 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ ( 𝑞 ∈ 𝑍 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) |
| 214 |
173
|
fveq2d |
⊢ ( 𝑦 = 𝑤 → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) = ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
| 215 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) |
| 216 |
|
fvex |
⊢ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ V |
| 217 |
214 215 216
|
fvmpt |
⊢ ( 𝑤 ∈ 𝑆 → ( ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ‘ 𝑤 ) = ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
| 218 |
217
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ‘ 𝑤 ) = ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
| 219 |
|
climdm |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) |
| 220 |
169 219
|
sylib |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) |
| 221 |
|
climcl |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 222 |
220 221
|
syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 223 |
222
|
fmpttd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) : 𝑆 ⟶ ℂ ) |
| 224 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝑆 ∈ 𝑉 ) |
| 225 |
1 212 113 213 218 223 224
|
ulm2 |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 226 |
211 225
|
mpbird |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ) |
| 227 |
|
releldm |
⊢ ( ( Rel ( ⇝𝑢 ‘ 𝑆 ) ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ) → 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
| 228 |
65 226 227
|
sylancr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
| 229 |
228
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) ) |
| 230 |
64 229
|
impbid |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |