| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulmcau.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
ulmcau.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
ulmcau.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 4 |
|
ulmcau.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑥 = 𝑤 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 ) ) |
| 6 |
5
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 ) ) |
| 7 |
6
|
rexralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 ) ) |
| 8 |
7
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑤 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 ) |
| 9 |
|
rphalfcl |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 10 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑥 / 2 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 11 |
10
|
ralbidv |
⊢ ( 𝑤 = ( 𝑥 / 2 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 12 |
11
|
rexralbidv |
⊢ ( 𝑤 = ( 𝑥 / 2 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 13 |
12
|
rspcv |
⊢ ( ( 𝑥 / 2 ) ∈ ℝ+ → ( ∀ 𝑤 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 14 |
9 13
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ∀ 𝑤 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∀ 𝑤 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 17 |
16
|
fveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 18 |
17
|
fvoveq1d |
⊢ ( 𝑘 = 𝑚 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ) |
| 19 |
18
|
breq1d |
⊢ ( 𝑘 = 𝑚 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 20 |
19
|
ralbidv |
⊢ ( 𝑘 = 𝑚 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 21 |
20
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) |
| 22 |
21
|
biimpi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) |
| 23 |
|
uzss |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) ) |
| 24 |
23
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) ) |
| 25 |
|
ssralv |
⊢ ( ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 27 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ↔ ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 29 |
28
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 30 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 31 |
30
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 32 |
1
|
uztrn2 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑚 ∈ 𝑍 ) |
| 33 |
31 32
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑚 ∈ 𝑍 ) |
| 34 |
29 33
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 35 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑚 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑚 ) : 𝑆 ⟶ ℂ ) |
| 36 |
34 35
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑚 ) : 𝑆 ⟶ ℂ ) |
| 37 |
36
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ∈ ℂ ) |
| 38 |
28
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 40 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 41 |
39 40
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 42 |
41
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) |
| 43 |
37 42
|
abssubd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 44 |
43
|
breq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 45 |
44
|
biimpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 46 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 47 |
28 30 46
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 48 |
47
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 50 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 51 |
49 50
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 52 |
51
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 53 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 54 |
53
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑥 ∈ ℝ ) |
| 55 |
54
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ℝ ) |
| 56 |
|
abs3lem |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ∈ ℂ ) ∧ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ∧ 𝑥 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 57 |
52 37 42 55 56
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 58 |
45 57
|
sylan2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 59 |
58
|
ralimdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 60 |
27 59
|
biimtrrid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 61 |
60
|
expdimp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 62 |
61
|
an32s |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 63 |
62
|
ralimdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 64 |
26 63
|
syld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 65 |
64
|
impancom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 66 |
65
|
an32s |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 67 |
66
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 68 |
67
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 69 |
68
|
com23 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 70 |
22 69
|
mpdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 71 |
70
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 72 |
15 71
|
syld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∀ 𝑤 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 73 |
72
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑤 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 74 |
8 73
|
biimtrid |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 75 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
| 76 |
75 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 77 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 78 |
76 77
|
syl |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 80 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑗 ) ) |
| 81 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 82 |
81
|
fveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) |
| 83 |
82
|
fvoveq1d |
⊢ ( 𝑘 = 𝑗 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 84 |
83
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 85 |
84
|
ralbidv |
⊢ ( 𝑘 = 𝑗 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 86 |
80 85
|
raleqbidv |
⊢ ( 𝑘 = 𝑗 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 87 |
86
|
rspcv |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 88 |
79 87
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 89 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 90 |
89
|
fveq1d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 91 |
90
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 92 |
91
|
fveq2d |
⊢ ( 𝑚 = 𝑘 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ) |
| 93 |
92
|
breq1d |
⊢ ( 𝑚 = 𝑘 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 94 |
93
|
ralbidv |
⊢ ( 𝑚 = 𝑘 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 95 |
94
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
| 96 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 98 |
97 40
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 99 |
98
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) |
| 100 |
4 30 46
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 101 |
100
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 102 |
101 50
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 103 |
102
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 104 |
99 103
|
abssubd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ) |
| 105 |
104
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 106 |
105
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 107 |
106
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 108 |
95 107
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 109 |
88 108
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 110 |
109
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 111 |
110
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 112 |
74 111
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |