Metamath Proof Explorer


Theorem ulmcau2

Description: A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < x there is a j such that for all j <_ k , m the functions F ( k ) and F ( m ) are uniformly within x of each other on S . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses ulmcau.z 𝑍 = ( ℤ𝑀 )
ulmcau.m ( 𝜑𝑀 ∈ ℤ )
ulmcau.s ( 𝜑𝑆𝑉 )
ulmcau.f ( 𝜑𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
Assertion ulmcau2 ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑚 ∈ ( ℤ𝑘 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( ( 𝐹𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) )

Proof

Step Hyp Ref Expression
1 ulmcau.z 𝑍 = ( ℤ𝑀 )
2 ulmcau.m ( 𝜑𝑀 ∈ ℤ )
3 ulmcau.s ( 𝜑𝑆𝑉 )
4 ulmcau.f ( 𝜑𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
5 1 2 3 4 ulmcau ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( ( 𝐹𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) )
6 1 2 3 4 ulmcaulem ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( ( 𝐹𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑚 ∈ ( ℤ𝑘 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( ( 𝐹𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) )
7 5 6 bitrd ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑚 ∈ ( ℤ𝑘 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( ( 𝐹𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) )