Step |
Hyp |
Ref |
Expression |
1 |
|
ulmss.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
ulmss.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
3 |
|
ulmss.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 ∈ 𝑊 ) |
4 |
|
ulmss.u |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
5 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑇 ⊆ 𝑆 ) |
7 |
|
ssralv |
⊢ ( 𝑇 ⊆ 𝑆 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
9 |
|
fvres |
⊢ ( 𝑧 ∈ 𝑇 → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑧 ) = ( 𝐴 ‘ 𝑧 ) ) |
10 |
9
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑧 ) = ( 𝐴 ‘ 𝑧 ) ) |
11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑥 ∈ 𝑍 ) |
12 |
3
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → 𝐴 ∈ 𝑊 ) |
13 |
12
|
resexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐴 ↾ 𝑇 ) ∈ V ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) = ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) |
15 |
14
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑍 ∧ ( 𝐴 ↾ 𝑇 ) ∈ V ) → ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ↾ 𝑇 ) ) |
16 |
11 13 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ↾ 𝑇 ) ) |
17 |
16
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑧 ) ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) |
19 |
18
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
20 |
11 12 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
21 |
20
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) = ( 𝐴 ‘ 𝑧 ) ) |
22 |
10 17 21
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ) |
23 |
22
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ) |
24 |
|
nfv |
⊢ Ⅎ 𝑘 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) |
25 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑇 |
26 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
28 |
26 27
|
nffv |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) |
29 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) |
30 |
29 27
|
nffv |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) |
31 |
28 30
|
nfeq |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) |
32 |
25 31
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) |
33 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ) |
34 |
33
|
fveq1d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ) |
36 |
35
|
fveq1d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
37 |
34 36
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
38 |
37
|
ralbidv |
⊢ ( 𝑥 = 𝑘 → ( ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
39 |
24 32 38
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝑍 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ↔ ∀ 𝑘 ∈ 𝑍 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
40 |
23 39
|
sylib |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
41 |
40
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
42 |
|
fvoveq1 |
⊢ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) → ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
43 |
42
|
breq1d |
⊢ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) → ( ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
44 |
43
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) → ∀ 𝑧 ∈ 𝑇 ( ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
45 |
|
ralbi |
⊢ ( ∀ 𝑧 ∈ 𝑇 ( ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) → ( ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
46 |
41 44 45
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
47 |
8 46
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
48 |
5 47
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
49 |
48
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
50 |
49
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
51 |
50
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
52 |
51
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
53 |
|
ulmf |
⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ∃ 𝑚 ∈ ℤ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
54 |
4 53
|
syl |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℤ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
55 |
|
fdm |
⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → dom ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) = ( ℤ≥ ‘ 𝑚 ) ) |
56 |
18
|
dmmptss |
⊢ dom ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ 𝑍 |
57 |
55 56
|
eqsstrrdi |
⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → ( ℤ≥ ‘ 𝑚 ) ⊆ 𝑍 ) |
58 |
|
uzid |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
60 |
|
ssel |
⊢ ( ( ℤ≥ ‘ 𝑚 ) ⊆ 𝑍 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑚 ∈ 𝑍 ) ) |
61 |
|
eluzel2 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
62 |
61 1
|
eleq2s |
⊢ ( 𝑚 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
63 |
60 62
|
syl6 |
⊢ ( ( ℤ≥ ‘ 𝑚 ) ⊆ 𝑍 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑀 ∈ ℤ ) ) |
64 |
57 59 63
|
syl2imc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝑀 ∈ ℤ ) ) |
65 |
64
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝑀 ∈ ℤ ) ) |
66 |
54 65
|
mpd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
67 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐴 ∈ 𝑊 ) |
68 |
18
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝑍 𝐴 ∈ 𝑊 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) Fn 𝑍 ) |
69 |
67 68
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) Fn 𝑍 ) |
70 |
|
frn |
⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → ran ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ ( ℂ ↑m 𝑆 ) ) |
71 |
70
|
rexlimivw |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → ran ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ ( ℂ ↑m 𝑆 ) ) |
72 |
54 71
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ ( ℂ ↑m 𝑆 ) ) |
73 |
|
df-f |
⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ↔ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) Fn 𝑍 ∧ ran ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ ( ℂ ↑m 𝑆 ) ) ) |
74 |
69 72 73
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
75 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
76 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
77 |
|
ulmcl |
⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) |
78 |
4 77
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
79 |
|
ulmscl |
⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) |
80 |
4 79
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
81 |
1 66 74 75 76 78 80
|
ulm2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
82 |
74
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 ∈ ( ℂ ↑m 𝑆 ) ) |
83 |
|
elmapi |
⊢ ( 𝐴 ∈ ( ℂ ↑m 𝑆 ) → 𝐴 : 𝑆 ⟶ ℂ ) |
84 |
82 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 : 𝑆 ⟶ ℂ ) |
85 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑇 ⊆ 𝑆 ) |
86 |
84 85
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( 𝐴 ↾ 𝑇 ) : 𝑇 ⟶ ℂ ) |
87 |
|
cnex |
⊢ ℂ ∈ V |
88 |
80 2
|
ssexd |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑇 ∈ V ) |
90 |
|
elmapg |
⊢ ( ( ℂ ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝐴 ↾ 𝑇 ) ∈ ( ℂ ↑m 𝑇 ) ↔ ( 𝐴 ↾ 𝑇 ) : 𝑇 ⟶ ℂ ) ) |
91 |
87 89 90
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝐴 ↾ 𝑇 ) ∈ ( ℂ ↑m 𝑇 ) ↔ ( 𝐴 ↾ 𝑇 ) : 𝑇 ⟶ ℂ ) ) |
92 |
86 91
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( 𝐴 ↾ 𝑇 ) ∈ ( ℂ ↑m 𝑇 ) ) |
93 |
92
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑇 ) ) |
94 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
95 |
|
fvres |
⊢ ( 𝑧 ∈ 𝑇 → ( ( 𝐺 ↾ 𝑇 ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑇 ) → ( ( 𝐺 ↾ 𝑇 ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
97 |
78 2
|
fssresd |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝑇 ) : 𝑇 ⟶ ℂ ) |
98 |
1 66 93 94 96 97 88
|
ulm2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ( ⇝𝑢 ‘ 𝑇 ) ( 𝐺 ↾ 𝑇 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
99 |
52 81 98
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ( ⇝𝑢 ‘ 𝑇 ) ( 𝐺 ↾ 𝑇 ) ) ) |
100 |
4 99
|
mpd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ( ⇝𝑢 ‘ 𝑇 ) ( 𝐺 ↾ 𝑇 ) ) |