Step |
Hyp |
Ref |
Expression |
1 |
|
caucvg.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
caucvg.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
3 |
|
caucvg.3 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
4 |
|
caucvg.4 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
6 |
5
|
cbvmptv |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) |
7 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
8 |
1 7
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
9 |
|
zssre |
⊢ ℤ ⊆ ℝ |
10 |
8 9
|
sstri |
⊢ 𝑍 ⊆ ℝ |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝑍 ⊆ ℝ ) |
12 |
6
|
eqcomi |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) |
13 |
2 12
|
fmptd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) : 𝑍 ⟶ ℂ ) |
14 |
|
1rp |
⊢ 1 ∈ ℝ+ |
15 |
14
|
ne0ii |
⊢ ℝ+ ≠ ∅ |
16 |
|
r19.2z |
⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
17 |
15 3 16
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
18 |
|
eluzel2 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
19 |
18 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
20 |
19
|
a1d |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → 𝑀 ∈ ℤ ) ) |
21 |
20
|
rexlimiv |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → 𝑀 ∈ ℤ ) |
22 |
21
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → 𝑀 ∈ ℤ ) |
23 |
17 22
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
24 |
1
|
uzsup |
⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
26 |
8
|
sseli |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
27 |
8
|
sseli |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
28 |
|
eluz |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ 𝑘 ) ) |
29 |
26 27 28
|
syl2an |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ 𝑘 ) ) |
30 |
29
|
biimprd |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑗 ≤ 𝑘 → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
32 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) |
33 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
34 |
31 32 33
|
fvmpt3i |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) |
36 |
35 32 33
|
fvmpt3i |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
37 |
34 36
|
oveqan12rd |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) |
38 |
37
|
fveq2d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
39 |
38
|
breq1d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
40 |
39
|
biimprd |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
41 |
30 40
|
imim12d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
42 |
41
|
ex |
⊢ ( 𝑗 ∈ 𝑍 → ( 𝑘 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) ) |
43 |
42
|
com23 |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( 𝑘 ∈ 𝑍 → ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) ) |
44 |
43
|
ralimdv2 |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
45 |
44
|
reximia |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
46 |
45
|
ralimi |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
47 |
3 46
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
48 |
11 13 25 47
|
caucvgr |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ∈ dom ⇝𝑟 ) |
49 |
13 25
|
rlimdm |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ∈ dom ⇝𝑟 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
50 |
48 49
|
mpbid |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) |
51 |
6 50
|
eqbrtrid |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) |
52 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) |
53 |
2 52
|
fmptd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) : 𝑍 ⟶ ℂ ) |
54 |
1 23 53
|
rlimclim |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
55 |
51 54
|
mpbid |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) |
56 |
1 52
|
climmpt |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
57 |
23 4 56
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
58 |
55 57
|
mpbird |
⊢ ( 𝜑 → 𝐹 ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) |
59 |
|
climrel |
⊢ Rel ⇝ |
60 |
59
|
releldmi |
⊢ ( 𝐹 ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) → 𝐹 ∈ dom ⇝ ) |
61 |
58 60
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |