Metamath Proof Explorer


Theorem ulmrel

Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion ulmrel ReluS

Proof

Step Hyp Ref Expression
1 df-ulm u=sVfy|nf:nsy:sx+jnkjzsfkzyz<x
2 1 relmptopab ReluS