Metamath Proof Explorer


Definition df-ulm

Description: Define the uniform convergence of a sequence of functions. Here F ( ~>uS ) G if F is a sequence of functions F ( n ) , n e. NN defined on S and G is a function on S , and for every 0 < x there is a j such that the functions F ( k ) for j <_ k are all uniformly within x of G on the domain S . Compare with df-clim . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion df-ulm u=sVfy|nf:nsy:sx+jnkjzsfkzyz<x

Detailed syntax breakdown

Step Hyp Ref Expression
0 culm classu
1 vs setvars
2 cvv classV
3 vf setvarf
4 vy setvary
5 vn setvarn
6 cz class
7 3 cv setvarf
8 cuz class
9 5 cv setvarn
10 9 8 cfv classn
11 cc class
12 cmap class𝑚
13 1 cv setvars
14 11 13 12 co classs
15 10 14 7 wf wfff:ns
16 4 cv setvary
17 13 11 16 wf wffy:s
18 vx setvarx
19 crp class+
20 vj setvarj
21 vk setvark
22 20 cv setvarj
23 22 8 cfv classj
24 vz setvarz
25 cabs classabs
26 21 cv setvark
27 26 7 cfv classfk
28 24 cv setvarz
29 28 27 cfv classfkz
30 cmin class
31 28 16 cfv classyz
32 29 31 30 co classfkzyz
33 32 25 cfv classfkzyz
34 clt class<
35 18 cv setvarx
36 33 35 34 wbr wfffkzyz<x
37 36 24 13 wral wffzsfkzyz<x
38 37 21 23 wral wffkjzsfkzyz<x
39 38 20 10 wrex wffjnkjzsfkzyz<x
40 39 18 19 wral wffx+jnkjzsfkzyz<x
41 15 17 40 w3a wfff:nsy:sx+jnkjzsfkzyz<x
42 41 5 6 wrex wffnf:nsy:sx+jnkjzsfkzyz<x
43 42 3 4 copab classfy|nf:nsy:sx+jnkjzsfkzyz<x
44 1 2 43 cmpt classsVfy|nf:nsy:sx+jnkjzsfkzyz<x
45 0 44 wceq wffu=sVfy|nf:nsy:sx+jnkjzsfkzyz<x